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1. Introduction

The focus of our research in the CoABS program was to develop new methods for human
control of agent-based systems. Our project focused on how humans users can connect to,
participate in, and control agent-based systems. This turns out to be an interesting and
different research problem for exactly the same reasons that agents are exciting and dif-
ferent from conventional computer systems. In fact, everything that makes agent-based
systems “agent-based” affects how humans can interact with, benefit from, and ultimately
control such systems.

Agent-based systems represent a paradigm shift in the way people interact with comput-
ers. This shift involves moving from seeing the computer as a tool to be used for getting a
particular job done, to seeing the computer as an agent that can cooperate to help get
things done. As an illustration, consider a typical tool such as a screwdriver. When I see
that a screw is loose, I can get out the toolbox, find the screwdriver, apply it directly to
the screw (lining up the head of the screw with the end of the screwdriver), twist until I
feel the screw is tight enough, then put the screwdriver back in the toolbox and move on
to the next job.

This is how people currently use computer systems. If I need to prepare a report, for ex-
ample, I find Microsoft Word on my machine, launch it, work on the documentation, save
my work when I think it’s done, and exit Word. My computer is a toolbox full of tools,
some of which are easier to use than others but all of which have the following proper-
ties:

» They are always available but need to be explicitly invoked to perform their spe-
cific task.

* Their use involves directly manipulating the data that they are operating on (in-
deed, direct-manipulation interfaces are seen as a major improvement over the
previous interface technology, which was programming).

* The user must monitor and control the system until the job is done.

* If more than one tool is needed to perform some task or accomplish some goal,
integration and application of the various tools is left entirely to the user (some
“productivity suites” support rudimentary connections between tools, but these
are primitive, ad hoc, and usually ignored by users).

Contrast this use of computers with the way people interact with other people to get jobs
done. These properties are what distinguish agents from tools, and are representative of
the new approach to human-computer interaction represented by humans using agent-
based systems:

* Agents are autonomous. That is, they may not be sitting around waiting for us to
use them. We may need to find the agents we need to get the job done, just as we
would need to put together a team of people with the right set of skills to solve a
problem. Further, autonomous agents can and will perform tasks on their own
without supervision.



» Agents recognize intention. That is, we do not need to specify every low-level
detail of how an agent should perform some task in order to control it effectively.
Rather, agents are controlled at a much higher level of abstraction, recognizing
the intentions of other agents and determining how best to help (or hinder) those
intentions.

» Agents can take initiative. They are not passive objects but are active participants
in an ongoing collaborative process involving people and other agents. Agents can
take initiative both in communicating information and in performing necessary
tasks.

» Agents can delegate responsibility and/or authority to other agents, and can even
delegate to human agents. This is crucial to how organizations of human agents
are controlled, and is fundamentally different from the use of computers as tools.

» Agents are distributed. This rather obvious point underlies a much more signifi-
cant aspect of agents, namely that the behavior of agent-based systems is neces-
sarily based on issues of communication and negotiation. These communicative
behaviors are both between agents themselves and between agents and people. In
fact, given that people are the ones with the problems to solve, it is arguably the
human-agent communication and negotiation that dominates any solution to the
problem of controlling agent-based systems in practice.

It is precisely these properties of agents that make them interesting, and it is precisely
these properties that force us to consider new ways of supporting human control of agent-
based systems.



2. Technical Accomplishments
Our work in this project was divided into three main thrusts:

1. Validating and refining our architecture for intelligent user-assistant agents, and
continuing development of the implemented infrastructure;

2. Developing a general problem-solving model to support the integration of agents
into a collaborative problem-solving process;

3. Development of a series of implemented, end-to-end, human-in-the-loop agent-
based systems, both to illustrate the utility of such systems in real-life situations
and experimentally validate the models and architectures and drive their further
development.

This section will detail our accomplishments in each of the thrusts, although, of course,
the research in the various thrusts overlaps to some extent. The final year of the project
was funded through the DAML program. The technical goals and accomplishments of
this part of the effort are described at the end of this section.

2.1. Architecture and Infrastructure for Collaborative Agent-Based
Systems

TRIPS, The Rochester Interactive Planning System (Ferguson, Allen, and Miller, 1996;
Allen, Ferguson, and Schubert 1996; Ferguson and Allen, 1998), is a prototype of an in-
telligent, collaborative assistant that interacts with its human manager using a combina-
tion of natural language and graphical displays. The system understands the interaction as
a dialogue between it and the human. The dialogue provides the context for interpreting
human utterances and actions, and provides the structure for deciding what to do in re-
sponse. With the human in the loop, they and the system together can solve harder prob-
lems faster than either could solve alone.

The TRIPS architecture has always been designed to support agent-oriented components.
The infrastructure includes a KQML Facilitator with extensive support for debugging and
development, as well as features such as broadcast, status notification, and content-based
addressing. TRIPS modules exchange KQML messages via the facilitator, and again the
infrastructure provides support for doing this with minimum overhead to the system de-
velopers. Specifically, modules can use standard input and standard output for communi-
cation, and the TRIPS Launcher sees to it that these streams are connected to the Facili-
tator when the module is launched. Of course, modules are free to manage their I/O
themselves if they wish. This infrastructure has been invaluable in extending TRIPS with
new modules with minimum overhead.

2.1.1 An Architecture for More Realistic Agent-Based Conversational Sys-
tems

The TRIPS system was designed from the outset to separate the process of interpreting
the user’s utterances and actions from the performance of problem-solving activities. The
former problem was addressed by the Discourse Manager (DM), an agent that responds



to user utterances and actions by interpreting them in context in an attempt to recognize
what the user intended by them. Once a plausible interpretation is determined, the system
typically has some obligation to respond appropriately, such as by answering a question
or performing an action. In earlier versions of TRIPS, this was the role of the Problem
Solver (PS), an agent that knows how to invoke the various specialized reasoners and
other agents in support of user problem-solving activities. For example, it farmed out
queries to relevant agents and integrated their responses in preparation for generating a
response to the user. In a planning domain such as we have generally explored in previ-
ous versions of TRIPS, the Problem Solver coordinated the invocation of planning, rout-
ing, and scheduling agents in response to (the Discourse Manager’s interpretation of) user
utterances. It also maintained the current state of the task, to aid in contextual interpreta-
tion and solution generation.

The separation between discourse management and problem solving behavior was an im-
portant contribution of the initial TRIPS architecture to the structure of mixed-initiative
and conversational systems. However, in working on the TRIPS-CAMPS system (Section
2.3.2), as well as in work on our own “Monroe County/911” domain (Section 2.3.4), we
noted some significant shortcomings of the model. The first major problem was that there
was really no place in the architecture for external events (i.e., events other than user in-
put utterances and actions) to get “into” the system. In the Monroe County domain, for
example, the user is managing a 911-like scenario where new emergencies and problems
with ongoing tasks crop up continually. In the past, we had treated these as a special type
of “input event,” and passed them through the Discourse Manager to the Problem Solver,
which knew how to deal with them. Not only was this a kludge, but it really left very lit-
tle opportunity for the system to make decisions about taking initiative towards the event
(e.g., mentioning it, working on it, ignoring it, efc.). Second, the Problem Solver was in-
volved in too many things. It performed recognition services to aid the Discourse Man-
ager in interpretation. It invoked specialized reasoners and integrated their responses. It
made decisions about how the system should respond to (interpreted) inputs. It main-
tained state information. And it probably did other things also. Third and finally, the
DM-PS architecture placed rigid control of the generation (output) process in the hands
of the DM. This precluded a variety of interaction behaviors (such as grounding) that are
natural to humans and are essential to supporting realistic mixed-initiative conversation
between humans and computers.

To address these shortcomings, we re-designed the TRIPS architecture as shown in Fig-
ure 1. In this architecture, the functionality of the conversational system is divided among
three autonomous agents:

1. The Interpretation Manager (IM) assumes most of the functions of the old Dis-
course Manager, except that where the DM also determined how to respond to an
utterance, the IM simply outputs plausible interpretations of user utterances and
actions.

2. The Behavioral Agent (BA), as its name implies, controls the overall behavior of
the system, determining whether and how to respond to events, including inter-
preted input but also including events reported from other agents and information
sources. This is the functionality that was previously divided (rather confusingly)
between the DM and the PS.
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Figure 1: Agent-Based Conversational System Architecture

3. The Generation Manager (GM) now operates autonomously, independent of any
ongoing interpretation and behavioral processes. It responds to events from other
components, such as obligations arising from user utterances (determined by the
IM and maintained in the shared Discourse Context) and requests to perform
communicative acts from the Behavioral Agent. The GM is itself implemented as
a community of agents operating autonomously to manage user interaction at sev-
eral levels simultaneously (Stent, 2001).

Of course, these components and the many others that make up the TRIPS system are
connected via the TRIPS Facilitator that has proven so useful in the past. While redes-
igning the TRIPS architecture, we also took the opportunity to reimplement the TRIPS
Facilitator in Java. This was really essential for the long-term viability of the system, as
well as enhancing portability. It also opens up new possibilities for visualizing the com-
munity of agents making up the TRIPS system, by providing hooks with which elaborate
displays could be built without changing the core Facilitator code.

The new architecture is described in more detail in (Allen, Ferguson, and Stent, 2001; see
Appendix B). The important aspect for our work in CoABS is that the Behavioral Agent
is now where it belongs as the “heart” of the system, at least as regards choosing how to
respond to events. Since the TRIPS system is generally supposed to be helpful, it will
usually respond to user requests immediately. But the new architecture, with problem-
solving goals and obligations being maintained by the Behavioral Agent, allows it to, for
example, choose to inform the user of a pressing emergency that has just popped up,
rather than responding to a less important (to it) question from the user. It can also choose



to take initiative on problems as appropriate, requesting that the Generation Manager in-
form the user at the appropriate time.

This architecture was crucial to the system’s performance in domains such as the Hurri-
cane Mitch Honduras scenario developed as part of the MIATA TIE (Section 2.3.3).

2.1.2. Information Sharing Between Agents in TRIPS

One of the important ways agents communicate is by “broadcasting” information to those
who might need to know about it. It is unreasonable, on both practical and philosophical
grounds, to assume that agents know each other’s names and can send each other pre-
cisely the messages that they need. Rather, in a large agent-oriented system such as
TRIPS, it makes sense to think of (some) agents as knowledge providers (sources) and
others as knowledge consumers (sinks). The agents describe their information needs or
capabilities, and the infrastructure arranges for the messages to get from sender to re-
ceiver as appropriate for the content of the message. Note that this is a capability that we
argued should be added to the CoABS Grid, but the suggestion was not adopted.

In any event, we have supported this type of communication in the TRIPS Facilitator for
some time, through what we called a selective broadcast capability. Messages without an
explicit receiver were candidates for broadcast, but only to those agents that had previ-
ously indicated an interest in receiving the sender’s messages. This worked, but required
knowledge about other agent’s names and capabilities that was unworkable in general, as
noted above.

We therefore extended the communication model supported by the Facilitator to provide
true advertise and subscribe capabilities. Advertisements are used in a directory-like
lookup service to find agents that can perform certain services. We use a simple pattern-
based language for specifying advertisements and matching against them, but a more
general solution would obviously need to rely on a richer model of the semantics of inter-
agent communication (as being pursued, for example, in the DAML program). Subscrip-
tions are similarly based on a pattern-matching language that subsumes and extends our
original “listener” model of selective broadcast. We use our subscriptions extensively to
structure the flow of information at a semantic level without needing to be concerned
with the details of which agents are doing what.

To reiterate the importance of this work, it would be unthinkable to develop a system like
TRIPS, with around thirty agents operating autonomously on highly-structured semantic
information, without some infrastructural support for the selective broadcast of that in-
formation.

2.1.3. Connecting to the CoABS Grid

To make it easier for TRIPS agents to interact with other agents, we developed a general
purpose proxy agent that allows a CoABS Grid agent to interact with TRIPS agents via
the Facilitator. This agent registers with both the TRIPS Facilitator and the Grid lookup
service, and allows an arbitrary Grid component (specified by name) to exchange mes-
sages with TRIPS agents. This was used in the TRIPS-MIATA system (Section 2.3.3).



2.1.4. Getting Answers from Agents

One of the problems that cooperating agent systems such as TRIPS have is determining
whom to contact in order to get queries answered. Initially in TRIPS, each agent looked
after this itself and made queries to other agents as needed. But this became very complex
as the number of agents grew, especially when in order to answer some queries, an agent
may have to contact several other agents to get the different pieces of information needed
to assemble the answer to the query. As well, the set of agents can change dynamically,
which requires additional management capabilities to be built into each agent.

To remedy this situation, we developed a new broker for queries, the TRIPS Query Man-
ager. Agents can register with the Query Manager and advertise their capabilities by indi-
cating for what predicates they are able to answer queries. When an agent later makes a
query, it is picked up by the Query Manager which then directs it to the appropriate
agents. The query manager handles certain logical operators, such as conjunction (AND)
and iteration (FOREACH). It can break apart a complex query, use different agents to
answer each part, and then combine the results to provide the answer back to the original
requester agent. For “universally quantified” queries, such as “What units are available?”,
the Query Manager can gather results from multiple agents and return the combined list
as the answer.

Because the Query Manager’s behavior can dynamically change as new agents become
available and advertise their capabilities, or as old agents stop providing certain query
services, it provides a level of robustness and flexibility that could not be attained if each
agent had to hardwire who it needed to ask for information.

It is worth noting that the TRIPS Query Manager is similar to the main feature of the
OAA Facilitator, namely matching goals (queries) against agents. In TRIPS, the Facili-
tator concentrates on facilitating communication between agents, and leaves query bro-
kering to the Query Manager. Note that the TRIPS Facilitator provides content-based ad-
dressing (subscription) that allows the Query Manager to handle queries without the que-
rying agents needing to know whom to ask for the answer. The OAA Facilitator is some-
what more complex at this point, since it can be “programmed” with Prolog rules that al-
low it to do inference in order to answer queries. Of course, the Query Manager, being a
separate agent itself, can equally well be programmed (and is currently, for the extended
capabilities described above). It would not be hard to integrate a Prolog engine into the
Query Manager if that was the most convenient way to specify its behavior (we’re not
sure that it is, mind you).

The Query Manager is fully implemented and in use in current versions of the TRIPS
system. Future development will involve enhancing the advertisement model beyond
simply naming predicates and performing some forms of query optimization to improve
performance.

2.2. A Model of Collaborative Problem-Solving

The work described in the previous section is the foundation on which conversational,
collaborative assistants can be built. In the section we describe the work we have done
specifically to address the needs of collaborative problem-solving in agent-based sys-
tems.



2.2.1. Requirements for Collaborative Problem-Solving

In previous versions of TRIPS, there was a tight linking between the abstract problem
solving (generic across all task-oriented interactions) and the specific plan reasoning re-
quired in order to build deployment plans. To move towards more generic control of
agent-based systems, we have had to separate out the different components. Specifically,
there are three different capabilities required of an agent-based collaborative problem-
solving system:

1. Managing the problem solving state: what goals and preferences, what solutions,
and what different scenarios are being considered.

2. Task modeling: using a model of the human’s task in order to recognize intention,
take initiative when desired, and plan the presentation of relevant information to
enhance the human’s situation awareness.

3. Managing the tasking of agents: what agents are available and what capabilities
do they provide, how are results coordinated between the agents over the longer
term.

2.2.2. Collaborative Problem Solving Management (An Initial Approach)

The key to effective collaborative problem-solving from the system’s perspective is that
human high-level goals must be translated into specific taskings for the set of available
agents. In our first attempt, this was all done by the TRIPS Problem Solving Manager
(PSM). In our model, the PSM was extended to support the following operations: (1) plan
recognition to support the Discourse Manager in choosing among multiple interpretations
(intention recognition); (2) reasoning about how to use the available agents in the current
problem-solving context (in order to be most helpful); and (3) the actual management of
the interaction between the PSM and the sub-agents, including formulating messages and
gathering replies.

A preliminary version of the new PSM was in place in the CoABS Science Fair demon-
stration of the TRIPS-CAMPS system in Washington in October, 1999. As described in
Section 2.3.2, that system involved TRIPS agents working with the CAMPS-MP Air
Mobility Command mission planner and an agent that plays the role of the AMC “Bar-
rel”. The Barrel interacts with the actual units in the field in order to know what assets are
available, and allocates specific assets to requirements when requested.

The new PSM was able to make plans to interact with these two agents in order to ac-
complish goals. For instance, after a question about resource needs, the system answers
“4 C141s and one C5 will be needed”. In processing the subsequent question “Where can
we get them”, the problem solver plans to locate 4 C141s and 1 C5. It knows that the Bar-
rel agent can only answer queries about one plane type at a time, so it plans two calls, one
for C141s and one for CS5s, and then combines the results to produce an answer for the
user. In other cases, the problem solving must call the Barrel agent to find resources, and
then call the scheduler with those resources to produce a schedule.

2.2.3. An Agent-Based Model of Collaborative Problem-Solving

As described in the previous section, we ultimately redesigned the TRIPS system, with
the goal of providing a general-purpose architecture for building conversational assistants



Abstract Problem- Example Instantiations in Monroe County Domain
Solving Model Element

Objectives Treating heart attack victim at Marketplace Mall;
Repairing a downed electrical wire; Locating a
crew; Plowing a road

Solutions Send ambulance 61 to Marketplace Mall to get the
victim and transport them to Strong Hospital; Dis-
patch a crew from sector 3 to assess and repair the
downed power line

Resources Vehicles (ambulances, repair trucks, plows, heli-
copters); Crews (medical, repair, plow); Roads;
Fuel, Time

Situations Location of vehicles; Availability of crews; Status

of roads and bridge; Severity of damage; Type of
medical emergencies

Table 1: Instantiation of Abstract Problem-Solving Model Objects in
Monroe County 911 Domain

(Figure 1). The major changes involve a cleaner separation between the language and
dialogue components of the system and the task- and domain-specific reasoners that pro-
vide the system’s knowledge-based capabilities. This separation enhances portability to
new domains, and allows independent development of the different levels of the system.

The key to making this separation work is the specification of an interface language be-
tween the levels. In our case, this is an abstract model of problem-solving that captures
the generalities of collaborative problem-solving behavior across a variety of domains
(Allen, Blaylock, and Ferguson, 2002; see Appendix C). The model defines several
classes of entities that are used in problem-solving, such as objectives, solutions, re-
sources, and situations. There are then a variety of operations that can be performed on
these objects, such as creating an objective, extending a solution, identifying a situation,
and so on. In general, these operations are fundamentally collaborative—they cannot be
achieved by one party alone. So the model allows one participant to initiate a problem-
solving act, say of extending a solution. The other participant must then complete the act,
say by accepting the suggestion. They can also reject, abort, or clarify the problem-
solving act initiated by the other participant. Table 1 gives some examples of how the
various objects of the model are instantiated in our Monroe County 911 domain (Section
2.3.4). As is evident from the table, even in this simplified domain, the range of possi-
bilities for collaborative problem solving is quite extensive, as well as being representa-
tive of other problem-solving domains. However, a model this rich is absolutely essential
in order to specify in any principled way the behavior of the collaborative system.

A key aspect of our development, which separates our work from more language-centric
analyses, is that we are at all times concerned with actually grounding the problem-
solving in the system’s capabilities (its own and those of other agents that it can locate
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and use). It is not enough for us to simply categorize a statement as “extending a solu-
tion.” We need to figure out how that recognition might be done by the Task Manager in
a real context with real plans under consideration, then figure out how the Behavioral
Agent can coordinate the invocation of planners and schedulers (or whatever agents are
appropriate to the task and domain) to actually compute the new solutions, analyze them,
and produce responses to the user.

Compared to more language-oriented efforts, a significant part of the problem we are
solving involves getting the system to actually do something intelligent. Most other col-
laborative systems with which we are familiar perform relatively straightforward “back-
end” tasks, such as looking up flight schedules or locating Chinese restaurants. In these
domains, it is simple to determine how what the user said contributes the problem-
solving. Fore example, if they said something including “from Chicago,” then fill in the
“from” slot of the airline flight query template with the value “Chicago.” Then, in these
simple domains, it is trivial to specify how the system should perform the task. In this
example, send the query to the database and wait for the answer.

But in more realistic domains such as we have been considering in CoABS, the task that
the human-agent team is solving is more complicated, making it harder to recognize what
the user might be doing (since they could be doing more things), as well as harder to
“solve” the problems (generate solutions). Further, in our CoABS work we have concen-
trated on cases where the TRIPS system by itself cannot solve the problems with its own
reasoning components, but must rely in whole or in part with external agents with whom
it must communicate in order to produce solutions, analyses, or presentations. In cases
where we don’t have the external reasoners, we can still make progress by designing our
own reasoners to meet a general API, then force the rest of the TRIPS system to interact
with them as black boxes.

2.2.4. TRIPS Task Manager Agent

Eventually, our new model of collaborative problem solving led to the development of a
new component of the TRIPS architecture, the Task Manager (TM). This agent encapsu-
lates the system’s task- and domain- specific knowledge, and supports both recognition
and execution, as we will describe in this section.

Previously in the TRIPS architecture, a line was drawn between interpretation and be-
havior. That is, one set of agents and components, centered around the Interpretation
Manager, were involved in interpreting the user’s utterances and actions. Meanwhile, the
system’s overall behavior was controlled by the Behavioral Agent, which managed a
suite of agents to actually perform the system’s parts of the collaborative task. The inter-
face between them is in terms of the abstract problem-solving model described in the
previous section. This was a crucial insight and, once implemented, cleaned up many as-
pects of the system. In particular, it provided, perhaps for the first time in mixed-initiative
systems, a clear place where the initiative-taking behavior of the system was specified
and controlled.

However, this splitting of responsibilities started to lead to some duplication of effort. Or
worse, in places where the effort was not duplicated, similar reasoning tasks were being
performed differently, with the result that an interpretation could be produced that could
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not then be executed. While this is not necessarily wrong, it shouldn’t happen simply be-
cause of bad system design.

It became clear that there is a core set of knowledge about the task and domain at hand
that is shared between interpretation and execution. For example, the interpretation com-
ponents need to know “does it make sense that the user would be doing X?”” while the
execution (behavior) side needs to decide to what to do in response to the user doing X. In
a collaborative setting, these tasks are clearly complementary. If we can figure out that
probably the user is doing X, then we can know something about why they’re doing it
(for example, a higher-level goal that they are pursuing), and from that infer what we
should do (as part of a shared plan to achieve the higher-level goal, for example).

To encapsulate the system’s task- and domain-specific knowledge, we designed the Task
Manager component. In the TRIPS architecture, this is the only components that straddles
the boundary between interpretation and behavior. The Task Manager is based on a hier-
archical plan representation of user activities for the task at hand, and by a declarative
mapping from elements of the abstract problem-solving model to objects in the domain.
As this is just the first version of the Task Manager, these representations are still evolv-
ing. But as an example, in the TRIPS Monroe 911 domain, an task model activity might
be responding to an emergency. This can be decomposed into several steps, some of
which are prior to responding, such as identifying the location and severity of the emer-
gency, others of which take place during the response, such as checking that the assigned
vehicles make it on site in time, and so on. Similarly, the domain model in TRIPS
Monroe 911 would indicate that responding to emergencies is one type of goal, ambu-
lances and repair crews are among the resources available for use in solving problems,
and that situations are defined by such attributes as location of objects on the Monroe
County map and severity of injuries to people.

Based on this knowledge, the Task Manager can handle two types of requests. From the
Interpretation Manager, it can be asked to INTERPRET a set of possible user acts in a
given context. It responds with a set of interpretations, which each include both the meta-
collaborative problem-solving act that the Task Manager thinks accounts for the user act,
and a recognition rating, indicating how likely the Task Manager thinks the interpretation
is. From the Behavioral Agent, the Task manager can be asked to PERFORM a collabo-
rative problem-solving act. The response depends on what act was performed. Sometimes
there is content to be communicated to the user, sometimes it is just that the status of the
task has been updated.

A brief example will clarify the way the Task Manager supports both interpretation and
execution. Internal details of the representation will be grossly simplified for this report
(the actual knowledge representation used to exchange information between components
in TRIPS is very rich and quite expressive). Let’s say that, in the Monroe 911 domain,
the user asks “Can I use a helicopter?” during the discussion of responding to some
emergency. The Interpretation Manager will produce (at least) the following two inter-
pretations: either this could be a simple yes-no question about the user/system’s abilities
in general, or it is a request to evaluate a proposal to do something with a helicopter. The
Task Manager will rate the second interpretation higher (assuming that the person proba-
bly wouldn’t ask such a basic yes-no question in the 911 domain). It will also return that
this is an INITIATE (a meta-collaborative problem-solving act) of a C-EVALUATE-

11



FUTURE-ACTION (a collaborative problem-solving act, which involves both the user
and the system) about the use of a helicopter. This interpretation, once chosen by inter-
pretation, is broadcast as the system’s understanding of what the user has just done.

This is picked up by the Behavioral Agent, which has a standing goal of being coopera-
tive. In this case, that amounts to requesting that the Task Manager PERFORM an
EVALUATE-FUTURE-ACTION act (a simple, non-collaborative, problem-solving act).
The Task Manager responds with the evaluation, which it obtains from the various task-
and domain-specific reasoners at its disposal (perhaps a planner and a resource database,
in this example). For example, it might answer that this would be a good thing to do con-
sidering the options, and perhaps further communicating the changes in the current op-
erations needed to accommodate the new helicopter mission. These are communicated to
the user by the Behavioral Agent via the Generation Manager in an attempt to COM-
PLETE the collaborative act initiated by the user (assuming the BA didn’t have anything
more important to do by the time the TM was done). Once the user grounds (acknowl-
edges) the system’s response, the collaborative problem-solving act is in fact completed.

A preliminary prototype of the Task Manager is in use in the current TRIPS system.
There is plenty of future work here, including completing the specification of the Monroe
County task and domain models, and refining the collaborative problem-solving model to
properly account for a broader range of collaborative activities that might arise between
users and agent-based systems.

2.3. Integrated, End-to-end, Human-in-the-loop Agent-Based Systems

2.3.1. TRIPS-Pacifica

At the start of this project, we were working on the TRIPS system to improve its general-
ity and portability to new domains, especially in its capabilities to connect to different
agents to perform its back-end reasoning. This work was performed using the “Pacifica”
domain originally developed in the DARPA Planning Initiative (ARPI) program. This is
a simple crisis logistics or “NEO” domain where the human manager needs the system’s
assistance to plan the evacuation of the residents of the island of Pacifica ahead of an ap-
proaching hurricane. This system provided the baseline for the subsequent systems de-
scribed below.

During our CoABS work, we delivered a standalone demonstration version of TRIPS-
Pacifica to AFRL. The amount of work that this required should not be underestimated.

2.3.2. TRIPS-CAMPS

Fairly early in the project, it was suggested that we had not proven the case for TRIPS as
an agent-based system itself, apparently since we had developed all the agents ourselves.
We therefore began work with BBN towards integrating the CAMPS-MP airlift mission
planner into a new version of TRIPS.

The CAMPS-MP mission planner is designed to support planners at the Air Mobility
Command (AMC) in scheduling crews, cargo, and planes for Air Force missions. Rather
than adapt CAMPS-MP to another domain, we decided instead to develop an airlift mis-
sion planner domain for TRIPS. This would illustrate again the relative ease with which
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TRIPS components can be ported to new domains, and would provide us with another
opportunity to improve those aspects of TRIPS that remain difficult to port. It also served
as a key demonstration that TRIPS is capable of interacting with external agents that were
not designed with a dialogue system in mind. In performing this experiment, we discov-
ered what aspects of external systems are amenable to the incremental style of processing
in TRIPS, and identified requirements on external modules that would allow us to en-
hance the level of integration between human agents and these systems.

Our integration effort had the following objectives:

* Demonstrate that the TRIPS system could interoperate with components not de-
veloped at Rochester.

* Demonstrate that the TRIPS system could be adapted to perform a task other than
the NEO scenario on which we had concentrated previously.

* Demonstrate the effectiveness of mixed-initiative interaction in the performance
of a realistic task that is relevant to DARPA and its customers.

+ Start laying the groundwork for the MIATA TIE effort, that would involve both
TRIPS and CAMPS along with additional components.

In what follows, we will address briefly how each of these objectives was met.

First, we validated the design and implementation of the TRIPS infrastructure by con-
necting the CAMPS MP-Agent from BBN into the system. The TRIPS Facilitator-based
infrastructure (described previously) was invaluable in making this connection almost
painlessly. The CAMPS MP-Agent from BBN is an encapsulation of the CAMPS Mis-
sion Planner (MP) within a KQML message-passing shell. Since the MP-Agent was al-
ready prepared to communicate via a KQML API over socket-based connections, the in-
tegration with the TRIPS Facilitator was very straightforward. We had little trouble inte-
grating the MP-Agent into the overall TRIPS configuration, so that it could be started and
stopped conveniently with the other components of the TRIPS system.

The second aspect of the TRIPS-CAMPS integration involved adapting TRIPS to help
the human mission planner with their task. First, we had to determine the scope of that
task for purposes of the integration experiment. In collaboration with BBN, we developed
a simple model of the mission planning process in which the human mission planner uses
the CAMPS Mission Planner as a tool, providing it with requirements, assets, and addi-
tional resources and constraints. The CAMPS MP-Agent API was extended to support
this model through the addition of several KQML messages.

At this point we decided to complicate the picture by introducing another agent in the in-
tegration experiment. In the mission planning task, the human planner must request re-
sources from a central scheduling authority known as the “Barrel.” With BBN, we devel-
oped a BARREL agent that could answer queries about resource availability via a KQML
interface (a more realistic barrel agent would also manage resource allocation).

The integration effort ,while initially ad hoc, was ultimately based on the concrete (albeit
simplified) model of the task. At the time, task- and domain-level knowledge in TRIPS
was managed by the Problem Solver, which mapped the relatively domain-independent
output of the Discourse Manager into specific task- and domain-level actions, and coor-
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dinated the invocation of the specialized reasoners used in TRIPS. In this case, the rea-
soners involved were the CAMPS MP-Agent and the BARREL agent, rather than, for
example, the temporal planner, router, and scheduler used in the Pacifica domain. We
developed a new version of the Problem Solver to operate in the airlift mission planning
domain and coordinate the interaction with the CAMPS MP-Agent (e.g., to add require-
ments or assets, to request a schedule, or to request analysis of various problems that
could arise) and with the BARREL (mostly to determine asset availability for use in
scheduling requirements).

The third objective, and one of the most important in our minds, was to show the utility
of natural mixed-initiative interaction in a realistic task. Despite our simple model of the
mission planner’s task, and the limitations of TRIPS, CAMPS, and our BARREL agent,
the demonstration of the resulting system was very effective. While almost everything we
did conversationally in the demonstration could have been done with the CAMPS-MP
graphical user interface, it would have been more awkward (unless the user was a
CAMPS-MP expert, which would require extensive training). Furthermore, in some cases
the TRIPS-CAMPS system, using its task model, could perform several actions and com-
bine their results in order to meet the human planner’s intentions. It is these “compound
operations” that are difficult to perform with a GUI, but that are crucial to performing
real-world tasks effectively.

Finally, this integration effort was used as a “warmup” for the larger-scale MIATA TIE
which followed (see next section). But the work we did on the TRIPS-CAMPS system
was crucial to both TRIPS’ and CAMPS’ successful performance in the MIATA demon-
stration’s even large agent-based system of systems. A paper documenting our integration
efforts was presented as a poster at the ICMAS-2000 conference (Burstein, Ferguson, and
Allen, 2000; see Appendix A).

During the project, we delivered a standalone version of the TRIPS-CAMPS system to
AFRL.

2.3.3. TRIPS-MIATA

The next implemented system that we developed as part of our CoABS effort was for the
Mixed-Initiative Agent Team Administration (MIATA) Technology Integration Experi-
ment, a large-scale, live demonstration involving agents and systems from many different
institutions.

Work on the scenario for the MIATA demonstration had been ongoing since the start of
the CoABS program. From the outset, we felt that a natural disaster scenario would in-
clude all the elements of the simpler NEO scenarios used previously, while allowing us to
broaden both the scope of the operation (services involved, tasks to be performed, re-
sources to be used, etc.) and the range of agents involved (command and control, sched-
uling, execution, monitoring, reporting, efc.). Primarily due to the efforts of BBN, we had
extensive data on the real-life response to Hurricane Mitch in Honduras. One challenge
was that we needed to show in a few minutes (say ten) an operation that took weeks in
real life. We chose to do certain things in real time and use the “fast time” capabilities of
the underlying simulator to quickly move through routine (though still interesting) tasks
for purposes of demonstration.
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The specification of the final scenario proceeded in parallel with the determination of
which systems would be playing which roles in the demonstration. Our efforts focused on
the role to be played by TRIPS, and in particular which roles would benefit from the kind
of human-in-the-loop mixed-initiative interaction that TRIPS supports so well. With
BBN, we decided that the primary role would be an intelligent assistant for the Com-
mander of the Joint Task Force in charge of the operation. The TRIPS system would as-
sist him or her in putting together the team of agents making up the JTF, tasking them as
appropriate for the situation in Honduras, and then monitoring their operation and making
command decisions to resolve problems as the mission progressed. We originally envis-
aged a second TRIPS system supporting a human user in a different role: the dispatcher
managing the delivery of supplies from their arrival at the airport to the hardest-hit Hon-
duran towns. This person would be under the command of the J3 (operations), and prob-
lems encountered during the mission would percolate up the command chain depending
on the action (and authority) necessary to resolve them. A third role for TRIPS in the
MIATA scenario was as the assistant to the AMC mission planner responsible for getting
the supplies to Honduras in the first place, a role we could support using the TRIPS-
CAMPS system developed earlier in the program.

As the specification of roles became clearer, we completed the instantiation of the new
TRIPS architecture for the CJTF role. As noted in Section 2.2.1, we had previously re-
designed TRIPS to better support interaction with external agents and response to exter-
nal events, both of which are pervasive in the Hurricane Mitch scenario and the CJTF
role in particular. The majority of the work here, as expected, was in specifying the task
that the commander was performing in sufficient detail for TRIPS to be able to assist in
it. This required task-specific versions of the Task Manager and Behavioral Agent com-
ponents of TRIPS. The task specification we had for this role was not very detailed, so
the resulting components (and system) were not very robust (in the sense of being able to
support many aspects of the task), but they were a “first cut” at validating the new TRIPS
architecture. Certainly, it would have been impossible, or at least very ugly, to support
the type of mixed-initiative reporting required by the Hurricane Mitch scenario using our
old architecture. It was decided rather late in the game to not use a TRIPS-human system
for the dispatcher task. We had done some work on this, and the new architecture was
designed to support it, but there were other agents brought into the MIATA club that
could handle dispatching. This type of task is, however, at the core of our Monroe County
911 domain (see next section).

We planned from the outset to use the CoABS Grid in the MIATA TIE. We decided not
to route all message traffic between TRIPS components via the Grid, because we saw the
Grid as a connector of systems, rather than a replacement for existing communication
schemes. For this, we used our Grid proxy agent described in Section 2.1.3. As a proof of
concept, we implemented two simple databases as Grid components, then connected
them to TRIPS using our proxy agent. The two data sources are used transparently by the
TRIPS Behavioral Agent to answer queries during the demonstration.

The MIATA demonstration scenario is driven by the MapleSim simulator from CMU.
This system simulates the transit of Hurricane Mitch across Honduras using actual data,
simulates the effect of the storm on roads, bridges, and towns, and simulates the opera-
tion of trucks delivering supplies throughout the country. MapleSim communicates via a
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KQML interface, making it straightforward to integrate with other components. In order
to test our components (and in support of the “truck dispatcher” role originally planned
for the demonstration), we developed agents capable of driving the simulated trucks in
response to higher-level orders, as well as a visualization tool based on the TRIPS Map
Viewer and using the MapleSim KQML API. Although they did not figure in the initial
MIATA demonstration, they will be used extensively in our Monroe County 911 sce-
nario.

Finally, to support the use of the CIRL scheduler in a dynamic situation (which the Hur-
ricane Mitch scenario certainly is), we implemented a version of the TRIPS Router that
could find ground routes for trucks using the road network specified by the CMU simu-
lator. This wasn’t particularly hard—we had a general-purpose scheduler based on
Dijkstra’s algorithm already in TRIPS. An interesting issue arose when we noticed that
the representation of the road network used by the simulator involved on the order of ten
thousand points. The vast majority of these were not relevant to routing decisions (did not
involve intersection of roads) but were merely present in the GIS dump that made up the
road network specification. To make the routing algorithm practical, we made the router
dynamically create a routing subnetwork containing all the relevant points (about one
thousand), use that in computing routes, then expand the resulting route to contain a
specification suitable for the simulator.

Of course, a key issue for large demonstrations is coordinating the interactions between
agents and components from several different places. We spent plenty of time refining
interfaces and debugging messages. As before, the TRIPS infrastructure made this much
easier for components that worked within it. To support the needs of other TIE members,
we developed components that allow multiple TRIPS components to run within a single
Lisp image or Java virtual machine. This is completely transparent to the components,
which are built using infrastructure we have developed over the years, and is absolutely
necessary for platforms with less CPU horsepower or memory. Performance suffers
somewhat on these platforms, of course, but the system runs flawlessly.

The August, 2000, MIATA demonstration involved the following groups:

» University of Rochester: JTF Commander’s Assistant (twenty or so components sup-
porting spoken language interaction, Facilitator architecture, Grid interconnectivity)

* BBN: JTF Agents (multiple agents, internal KQML messaging, GUIs); CAMPS-MP;
JADE; Grid proxy

* SRI: J2 (Intel) agent

+ CMU: MapleSim simulator

» Kestrel: Glue-code generator

* OGI: Scheduler to schedule delivery of incoming supplies to towns

In addition, several players were added at the last minute, such as the Grid Visualization
project.

The first hurdle we overcame to make the demo a reality was that not all the software was
ready to play. Some stuff didn’t work as expected. Some people didn’t know how to
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make their stuff work in the demonstration environment. Some people never delivered
their stuff. We worked through these problems in the lead-up to the demo.

Next, we needed enough cycles to run everything. Not much thought had been given to
local arrangements. We shipped in our workhorse Ultra60 Sun workstation and it was
really the computational backbone of the demo. In addition to running all the TRIPS
components making up the JTF Commander’s Assistant, it ran the SRI J2 agent, BBN’s
CAMPS-MP, and the Grid service (the latter of which consumed huge amounts of re-
sources).

Next we had to interconnect all the other pieces. In the end there were at least five differ-
ent systems running three different operating systems (Solaris, Windows, Linux), all con-
nected by an ad hoc LAN that we administered. Some people didn’t know how to make
their software work on this LAN, so we looked after that also.

The entire system was setup before the demo, then broken down and moved to the main
conference room the morning of the demo.

The demonstration itself went very smoothly. The systems performed flawlessly. While
we had a “script” in order to structure the presentation and make sure that certain ele-
ments were shown (in order to illustrate important points about mixed-initiative interac-
tion in human-computer agent teams), it is important to note that the MIATA demo is
running live. All the agents are reacting to events that occur in the simulated version of
Honduras provided by MapleSim. This is very different from, e.g., the earlier NEO TIE,
where all the events are part of the script. The MIATA demo is inherently somewhat un-
predictable, and in fact it takes some effort to make the systems “perform on cue” for
demonstration purposes. We believe that this makes for a more compelling demonstra-
tion, however, which is why we have been building and demonstrating end-to-end sys-
tems for several years.

In any event, in the course of the demo, the JTF Commander put together his team,
tasked them out, then waited for reports and problems to arise. The J2, J3, and J4 agents
accepted their taskings and performed the following tasks. The J2 (Intel) coordinated the
use of truck and helicopter agents to determine of the extent of damage and formulate
needs requirements. The J4 (Logistics) worked to meet those requirements by arranging
for delivery of supplies (interacting with JADE and CAMPS-MP systems). The J3 (Ops)
then worked to get the supplies delivered as they arrived in-country. The system could be
seen working through either the Grid Visualization tool, or by observing the agents
working in the simulation, or by looking at the GUIs of the various agents in cases where
they had one. Underneath it all, MapleSim agents were actually driving or flying around
the country, and reporting their findings back to their superiors.

For the second MIATA demonstration, six months later, our objective was to build on the
successful execution of the previous demonstration, but add features and complexity that
highlighted the range of issues involved in managing mixed-initiative human-agent teams
and their possible technological solutions.

The main changes for us involved the fact that we wanted to do a better job of illustrating
the flow of initiative between the levels of agents in the system. The basic model is that
authority flows down from the top, as agents are tasked by their superiors. They may
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work on these tasks or delegate them to other agents. As they are working their tasks,
problems (or more generally, unanticipated situations) may arise. An agent has the choice
of taking initiative and trying to resolve the problem (deal with the situation) itself, or of
yielding the initiative and passing the problem back to its superior. Thus problems (or
more generally reports, including positive reports) flow upstream from subordinate
agents to their superiors.

The major issue for designing agents that can participate in these mixed-initiative envi-
ronments is how to specify the situations in which they should take initiative and how to
specify those in which they should yield it (and to whom). The transfer of initiative has
been studied extensively in the area of conversational systems, where so-called “dialogue
initiative” controls which participant is expected to speak next. But the initiative to solve
problems corresponds more closely to so-called “task initiative,” which has been much
less extensively studied in the mixed-initiative literature. In addition to the behavior of
the individual agents, there is the meta-question of specifying (or analyzing) the behavior
of the multi-agent system (organization) as a whole. This is very difficult problem, and
while we do not yet know how to address it, the MIATA demonstration is intended to at
least illustrate the issue in a realistic scenario.

Those were our goals for the January, 2001, demonstration. As with the previous demo,
there was some significant engineering work to pull all the pieces together and have them
interoperate. The number of machines involved increased (to eight or nine), and we or-
chestrated the displays onto three screens. We will not dwell on these details—suffice to
say that as previously, some people’s software wasn’t ready to run, and some people’s
software never ran properly.

Technically, the demonstration was perfect. The systems interacted exactly as we had
hoped, with taskings flowing down from the JTF Commander to the agents representing
the JTF staff and thence to various domain agents like truck drivers and helicopter pilots.
As anomalous situations were encountered, such as the Intel group not being able to
reach some towns to perform needs assessment because of bridges being out, the reports
flowed upstream , ultimately to the Commander who was able to make an executive deci-
sion such as reassigning some assets from Ops to Intel temporarily.

For our specific part of the demonstration, namely the JTF Commander’s Assistant, both
the spoken language processing and the back-end interaction with the JTF Staff agents
worked perfectly. As noted above, the models we used for this version of TRIPS were not
the most robust, since we had neither detailed data on the language that such a com-
mander might use, nor, more significantly, any detailed model of how they might solve
the problems they encounter. Nonetheless, focusing on the language used in the demo
and working with an API for the Commander’s staff agents, we feel that the Com-
mander’s role in the MIATA demonstration made a convincing case for the kind of con-
versational assistant that we think is essential to allow users to interact with and control
agent-based systems.

We delivered a standalone version of the TRIPS-MIATA system to BBN for use during
development of the MIATA TIE. After the second demonstration, we delivered a video
of the live demonstration to DARPA and BBN.
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Figure 2: Monroe Countv 911 Samnle Man

2.3.4. TRIPS-Monroe/911

During our CoABS project, we also began development of a new domain in which
TRIPS can operate. This work again validates our claims of (relative) domain-
independence of the existing version of TRIPS and allows us to refine those aspects of
TRIPS that are difficult to adapt, making subsequent ports much simpler. A screenshot of
the map for this domain, based on a map of Monroe County, New York, is shown in Fig-
ure 2. The real-world map is obviously significantly more complex than the previous
Pacifica domain, and leads to a variety of difficult problems in such areas as linguistic
reference to objects and places in the domain, computational complexity of tasks such as
route-finding, and significantly more realistic and more difficult collaborative problem-
solving behavior overall. We will, in addition, be extending the task being performed
collaboratively to include management of multiple sets of resources (for example, rescue
crews and repair crews in an ice storm), possibly being managed by multiple people, and
ongoing execution and monitoring based on reports from agents in the field.

In order to bootstrap this work, we collected six hours of sessions in which people col-
laborated to build, describe, evaluate and modify plans. The experiments were designed
to elicit extensive interactions to develop brief plans, involve much answering queries
(drill down), and involve extensive plan modification. This data will serve as a resource
for several years to come in developing more natural automatic problem solving agents
that complement this human problem-solving rather than interfere with it

After the MIATA demonstration, we began trying to apply the progress we had made in
the MIATA domain to our base experimental system in this new Monroe County 911
domain. The MIATA domain is not particularly suitable as a testbed for our development
of mixed-initiative agent-based systems with humans in the loop. The main reason for
this is that we really have almost no significant model of the task the JTF Commander is
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performing during the management of the crisis. It is simply too complex, in a domain
that we do not understand well enough. The role that the Commander plays in the
MIATA scenario is primarily driven by the needs of the demonstration, which are unfor-
tunately not quite in line with our longer-term research plan.

The problem is that if we can’t model the task the user is performing, then we really can’t
build a collaborative assistant to assist them with it. Specifically, while we can build lan-
guage systems that superficially “understand” the way the Commander talks, we cannot
perform the crucial next step of interpreting their statements (and actions) in context to
recognize the intention behind what they said (or did). Without this, it is impossible to
build an assistant agent that, for example, adopts the user’s goals as its own and tries to
achieve them, or recognizes obstacles to the user’s goals and mentions them or tries to
remove them. Intention recognition is in fact critical to agent-agent interaction—to see
this, think about how much you use your sense of what someone is trying to do when you
interact with them.

Additionally, the MIATA domain is too complex for us to build reasoners that can pro-
duce solutions to problems faced by the Commander, even if we could recognize what
those were. The goal of our work in MIATA is not to build planners, schedulers, and
knowledge bases capable of reasoning about large-scale relief operations. But such com-
ponents are necessary in order to build intelligent systems that can collaborate with peo-
ple. So if we want to study human control of agent-based systems, we need to work in a
domain where these systems can contribute to the collaborative problem-solving.

The Monroe County 911 domain is intended to be just such a domain. It is obviously a
simplification relative to something like the JTF Commander’s role in the MIATA sce-
nario. On the other hand, it is significantly more complex than the role played by the user
in our previous Pacifica NEO domain. The use of a real geographical setting (indeed, one
that we and most of our users know intimately) provides a variety of challenges from
language to reasoning. The specification of the 911 dispatcher’s task as one of monitoring
problems in a dynamic world (provided by a simulator) and incrementally developing,
executing, and refining solutions pushes the state of the art at every level in the system.
Our goal is to make the domain realistic enough that the lessons learned can be general-
ized to more realistic domains and bigger and harder tasks, while still giving us the con-
trol we need to simplify aspects in order to accommodate our current partial understand-
ing of the technical problems and their solutions.

This work began under CoABS and is continuing under other funding.

2.4. Temporal Ontologies for the Semantic Web

For the final year of the project, our focus changed in order to address the goals outlined
in a SOW for a supplement funded through the DAML program. The issue there is that as
the web becomes populated by agents and services rather than pages and CGI scripts, the
interactions between them will become significantly more complicated. In particular,
agents will need to represent and reason about time, both in order to adequately describe
dynamic worlds and to control and coordinate their own behavior. While there has been
extensive work on temporal reasoning in the past, most work on temporal ontologies to
date glossed the complexities of time. Our project focused on developing ontologies and
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representations for describing dynamic temporal aspects of the world and developing
some useful DAML temporal ontologies. Specifically, the goals were:

» Survey prior work on temporal ontologies in DAML

» Participate in the development of an “upper-level” ontology of time

» Develop a practical temporal ontology suitable for use in marking up web data
We will comment briefly on each of these.

First, we completed a survey of the existing work on temporal ontologies within the
DAML program as part of development of some general temporal ontologies. While
there are some very extensive ontologies, such as the CYC ontology, it is overly complex
for most applications, and the temporal ontology is not easily separated from the rest of
the CYC ontology, which creates a high hurdle for most applications, where the needs for
expressing temporal information are more modest.

Second, we participated in a multi-site collaboration led by Jerry Hobbs on defining an
“upper-level” temporal ontology that could be shared among all the different researchers
in the DAML program. We played a key role in formulating and debugging the core axi-
oms so that different theories of time (e.g., point-based, interval-based, continuous, dis-
crete, and so on) were not excluded. A particular focus was the development of a set of
additional axioms that extend the core axioms to produce Interval Temporal Logic. We
developed automated and semi-automated tools for representing this ontology in DAML,
using an encoding of first-order logic in RDF developed by Drew McDermott and others.

Third, we have made significant progress on defining a simple but useful temporal ontol-
ogy that can be used to capture the everyday temporal information in documents and
data. It consists of a small set of primitive relations that generalize Interval Temporal
Logic (Allen, 1984; Allen and Ferguson, 1997) by allowing optional metric information.
For instance, there is a relation BEFORE that states that one time is before another, with
an optional temporal duration that constrains the allowable time between the two times.
Thus, a phrase like “X was 5 hours before Y” would be captured quite directly by a BE-
FORE relation between X and Y with a separation duration of 5 hours. Interestingly, if
we allow the duration constrain to be 0, then this relation corresponds to the MEETS re-
lations in Interval Temporal Logic. Because of this collapsing, instead of requiring 13
primitive relations, the proposed ontology only requires five. In the future we will be
evaluating the use of this ontology for marking up real-life data, and continuing to de-
velop it.

Finally, we developed and maintain the DAML-Time web site
(http://www.cs.rochester.edu/~ferguson/daml/) on which we will maintain different tem-
poral ontologies, including the “upper-level” ontology, our extensions for ITL, and ulti-
mately the new “user-friendly” temporal ontology we are developing. This work is on-
going as part of a new project funded by the DAML program.

3. Conclusion

In the course of this project, we have refined and developed our architecture for agent-
based collaborative systems, clarifying the responsibilities of the different agents and
their interfaces. We have developed a model of collaborative problem solving that not
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only provides a framework for interpreting the user’s intentions in the interaction, but is
also used as the communication language between the agents that comprise our system.
And we have developed and demonstrated a series of implemented, integrated, end-to-
end, human-in-the-loop systems in realistic domains. These systems both validate the un-
derlying models and components, and illustrate vividly how necessary such systems are
to enable human control of agent-based systems.
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5. Trips and Demonstrations

January, 1999

June, 1999

September, 1999

October, 1999

December, 1999

February, 2000

June, 2000
July, 2000
July-August, 2000

January, 2001

January-February,
2001

July, 2001
September, 2001

January, 2002

February, 2002

May, 2002

July, 2002

October, 2002

James Allen and George Ferguson attended the CoABS PI meeting
in Las Vegas, NV.

George Ferguson attended the CoABS PI meeting in Northampton,
MA, and demonstrated the TRIPS-CAMPS system.

James Allen and George Ferguson attended the ARPI PI meeting
in Washington, DC, and demonstrated the TRIPS-Pacifica and
TRIPS-CAMPS systems.

James Allen and George Ferguson attended the CoABS Science
Fair in Washington, DC, and demonstrated the TRIPS-CAMPS
system.

George Ferguson demonstrated the TRIPS-CAMPS system at the
AFRL Scientific Advisory Board meeting in Rome, NY.

George Ferguson and James Allen attended the CoABS PI meeting
in Atlanta.

George Ferguson visited BBN in Boston, MA.
George Ferguson attended AAAI-2000 in Austin, TX.

James Allen and George Ferguson attended the CoABS PI meeting
in Boston, MA, and demonstrated the TRIPS-MIATA system.

James Allen, George Ferguson, Amanda Stent, and Nate Blaylock
attended TUI-2001 in Santa Fe, NM, and presented both the key-
note address and a paper on the collaborative agent architecture.

James Allen and George Ferguson attended the CoABS PI meeting
in Miami, FL, and demonstrated the TRIPS-MIATA system.

James Allen attended the CoABS PI meeting in Nashua, NH.

George Ferguson presented a briefing at the CoABS PM transition
meeting in Washington, DC.

James Allen and George Ferguson attended the CoABS PI meeting
in Washington, DC.

James Allen and George Ferguson attended the DAML PI meeting
in St. Petersburg, FL.

James Allen gave an invited talk at the FLAIRS conference in
Penscola, FL, that described much of the work we have performed
in the CoABS program.

James Allen attended the AAMAS conference in Bologna, Italy,
and presented a paper on the collaborative problem-solving model.

George Ferguson and James Allen attended the DAML PI meeting
in Portland, OR.

23



October, 2002 George Ferguson and James Allen attended the Third Intl. NASA
Workshop on Planning and Scheduling for Space in Houston, TX,
and presented a paper on collaborative agents for planning and
scheduling.
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Appendix A: Integrating Agent-Based Mixed-Initiative Control
with an Existing Multi-Agent Planning System

Burstein, M., G. Ferguson, and J. Allen (2000). Integrating Agent-Based Mixed-Initiative
Control with an Existing Multi-Agent Planning System. Technical Report 729,
Computer Science Dept., University of Rochester, May.
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Abstract

One of the less appreciated obstacles to scaling multi-agent systems is understand-
ing the impact of the role(s) that people will play in those systems. As we try
to adapt existing software tools and agent-based applications to play support-
ive roles in larger multi-agent systems, we must develop strategies for coordi-
nating not only the problem solving behavior of these agent communities, but
also their information sharing and interactive behavior. Our research interest is
in mixed-initiative control of intelligent systems [Burstein and McDermott, 1996;
Burstein et al., 1998; Ferguson et al., 1996a] and, in particular, of interactive plan-
ning systems comprised of a heterogeneous collection of software agents. In this
paper, we describe our experience constructing a prototype tool combining ele-
ments of TRIPS [Ferguson and Allen, 1998], an interactive, mixed-initiative agent-
based planning architecture using spoken natural language dialogue, with the
CAMPS Mission Planner, an interactive airlift scheduling tool developed for the
Air Force [Emerson and Burstein, 1999], together with some related resource man-
agement agents representing other parts of the airlift planning organization. The
latter scheduling tools were not originally designed to participate as part of a
mixed-initiative, interactive agent community, but rather were designed for direct
user interaction through their own GUIs. We describe some requirements revealed
by this effort for effective mixed-initiative interaction in such an environment, in-
cluding the role of explanation, the need for contextual information sharing among
the agents, and our approach to intelligent invocation and integration of available
agent capabilities.
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1 Introduction

One of the less appreciated obstacles to scaling multi-agent systems is understand-
ing how people will play roles in those systems, and the nature of their interactions
with them. We expect that many multi-agent systems will evolve out of existing
software tools, suitably “agentized” so that they have greater access to other soft-
ware agent resources, and to other classes of users. To develop these kinds of
agent-based applications, playing supportive roles in larger multi-agent systems,
we must develop strategies for coordinating not only the problem solving behav-
ior of these agent communities, but also their information sharing and interactive
behavior with users.

Our research is on mixed-initiative (user/agent) control of intelligent systems
[Burstein and McDermott, 1996; Burstein et al., 1998; Ferguson et al., 1996a], and,
in particular, of interactive planning systems comprised of a heterogeneous col-
lection of software agents. Over the past year, we have been experimenting in
the space of mixed-initiative, multi-agent planning systems. We have developed
a prototype mixed-initiative planning tool for airlift scheduling by integrating ele-
ments of TRIPS, The Rochester Interactive Planning System, an agent-based, inter-
active, mixed-initiative planning system using spoken natural language dialogue
[Ferguson and Allen, 1998], with the CAMPS Mission Planner, an interactive airlift
scheduling tool developed for the Air Force [Emerson and Burstein, 1999], together
with some related resource management agents representing other parts of the air-
lift planning organization.

This effort had a number of goals. First, we wished to demonstrate the rel-
ative ease with which the TRIPS agent architecture could be adapted to a new
planning domain, and to interaction with a new back-end planner. Second, we
sought to understand what would be required for an effective agent ACL interface
to a scheduling or planning tool that had its own GUI and was not developed for
multi-modal mixed-initiative interaction. Third, we wished to develop a model for
the problem solving agent that could mediate between the user and a set of “back
office” planning agents. The last of these goals is an ongoing activity.

2 Background

Our work involves the integration of three existing systems, each of which is de-
scribed briefly in this section.

TRIPS, The Rochester Interactive Planner System [Ferguson and Allen, 1998]
is a multi-agent system that includes agents for interacting with the user in spo-
ken natural language (e.g., speech recognition, parsing, reference resolution, dis-
course management, speech generation, etc.) as well as knowledge-based agents
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Figure 1: TRIPS Facilitator display

that provide task and domain expertise to assist the user (e.g., planning, plan
recognition, route-finding, scheduling, efc.). It is the latest in a series of mixed-
initiative systems produced by an extended multi-year research program at the
University of Rochester that began with the TRAINS system [Allen et al., 1995;
Ferguson et al., 1996b]. The agents collectively provide a multi-modal interface by
which users can discuss and develop plans through mixed-initiative interaction
with what appears to them to be a single intelligent agent. The agents interact to
produce this behaviour by exchanging messages using the KQML agent commu-
nication language [Finin et al., 1993; Labrou and Finin, 1997], operating in a hub-
based architecture provided by the TRIPS Facilitator. Figure 1 shows the Facilita-
tor’s GUI view as it appears in the integrated TRIPS/CAMPS system discussed in
this paper (secondary nodes indicate a proxying relationship between agents). Fig-
ure 2 shows the logical organization of the agents involved in the TRIPS/CAMPS
system.

Previously, TRIPS/TRAINS has been demonstrated for planning in domains
such as non-combatant evacuations (NEOs), where a user and the system would
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Figure 2: TRIPS/CAMPS architecture (logical organization)

jointly develop a plan to evacuate people from a fictitious island (Pacifica) in the
face of an approaching hurricane. The user’s task was to plan the evacuation using
a variety of vehicles with varying capabilities, under constraints such as time, cost,
weather, etc. The modality management agents (speech and NL processing, gesture
capture) translate user actions into a set of possible communicative acts that are in-
terpreted by the Conversational Agent. This agent interacts with the Problem-Solving
Agent to find a plausible interpretation of what the user has just said and/or done.
They then jointly determine an appropriate response by coordinating domain-level
reasoners such as planners and schedulers. The Problem Solving Agent manages
the invocation of the back-end agents and coordinates their responses.

TRIPS supports a wide range of speech acts, ranging from direct requests (e.g.,
“show me the map”), questions (“Where are the transports?”), suggestions (“Let’s
use a helicopter instead.”), acceptances, rejections, and a range of social acts. The
Conversational Agent is domain independent. It is driven by a set of rules that
identify possible interpretations intended by a user, and plans an appropriate kind
of system response for each. Each interpretation/response is ranked and a single
response is selected. The Problem Solving agent (PS) is responsible for maintaining
the problem solving context, interacting with the Conversational Agent to decide
which interpretations of user actions are plausible, and plan for the execution of
the selected action by communicating with the appropriate back end agent(s).

The specialized back-end agents in TRIPS-98 and earlier incarnations included

30



U: Show me a map of pacifica.

T: Ok. (shows the map)

U: Where are the people?

T: There are two groups of people at Exodus, two at Calypso, ...
U: Use a truck to get the people from Calypso to Delta.

T: Ok. (show timeline view of plan under development in Plan Viewer)
U: How long will that take?

T: It will take four hours and fifty minutes.

U: What if we went along the coast instead?

T: That option will take six hours and thirty-seven minutes under
normal conditions.

U: Forget it.

Figure 3: Sample Dialogue with TRIPS-98 (excerpt)

an incremental (repair-oriented) temporal planner, a route finder, a scheduler, a
simulator that represented the changing world state, and a temporal knowledge
base agent. These various agents were invoked by the problem solving agent in
response to user inputs. A short excerpt from a typical session is shown in Figure 3.

The CAMPS Mission Planner [Emerson and Burstein, 1999] is one of several
prototype scheduling tools developed jointly by BBN Technologies, Kestrel Insti-
tute and CMU for the US Air Force. It is currently undergoing refinement and
integration in preparation for deployment in about a year’s time. As part of the
DARPA Control of Agent-Based Systems Program, BBN has “agent-ized” the Mis-
sion Planner (MP) for experimental use in mixed-initiative multi-agent systems.
The MP takes as inputs a set of “requirements,” each consisting of quantities of
cargo and people to be moved from one airport to another during some time in-
terval. It produces detailed schedules specifying the times at which an aircraft of
some type will fly from where they are based to pick up this cargo and carry it
to its destination, and then return to home base. Requirement sets can be quite
large, numbering hundreds or even thousands of elements, and hundreds of tons
of cargo, from tens of locations. Numerous constraints must be satisfied simul-
taneously to produce valid schedules, which the scheduler can do in seconds or
minutes.

A simplistic view of the task faced by a user of the Mission Planner is, given
a set of requirements, is to specify a set of suitable aircraft resources, the ports to
be made available for refueling (or locations for aerial refueling), should that be
necessary, and to ensure that the schedule produced moves all of the requirements
by their due dates. The scheduler will fail to schedule flights for all of the cargo
requirements if there are constraint violations, or insufficient resources provided,
in which case some cargo may be scheduled to arrive late or not at all. As originally
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developed, the CAMPS Mission Planner had a traditional graphical user interface
for specifying input parameters, and a variety of views of the product schedules
produced, including maps, tables and GANTT charts. All user interactions were
by keyboard and mouse.

A second scheduling tool, called the Barrel Allocator [Becker and Smith, 2000]
was developed jointly by CMU and BBN for another community of users (called
Barrelmasters for historical reasons) within the same Air Force planning organi-
zation. It is used to manage all of the cargo aircraft available from different bases
around the country. This tool takes as input the schedules produced by planners
once those plans have been committed to, and finds an allocation of aircraft to
missions that makes the most productive use of the limited available resources.
As more airlift missions are planned by different planners than there are aircraft
to fly them all, and because they are often planning far in advance, planners of-
ten plan against notional resources, rather than checking for where aircraft will
be available. This tool is used to commit particular bases to particular missions,
by priority, proximity, and availability, and if necessary reschedule flights to use
aircraft from different bases then originally planned. To represent the interaction
between the planners and the allocators, a simplified version of the Barrel system
was developed into an agent for use in the prototype system.

3 Preliminary Integration Experiment

In developing this demonstration system, our approach was to provide a straight-
forward API to the MP and BARREL agents using the KQML agent communi-
cations language, and to collect and catalog the reasoning and information inter-
change issues of the various agents forming the complete system. This included
problems arising in interpretation and reformulation of user intent, and the plan-
ning of requests to the various back-end, airlift-domain-specific agents.

Figure 4 shows some of the graphical views as seen from a user’s perspective,
as well as a “behind the curtain” view of the system’s activity and inter-agent mes-
sage traffic. Figure 5 shows a sample dialogue with the system. All of the dialogue
was verbal, and the conversation was managed by the TRIPS agents. The graphic
displays were generated by the CAMPS-MP agent, using pre-existing views, with
one exception. While a user could have accomplished much the same result by
interaction with the CAMPS-MP GUIs, many steps would have required tedious
entry of information through dialog windows.

The sample dialogue illustrates much of the capability of the combined system
at present. Using spoken language dialogue, users can quickly arrive at a solution
to typical scheduling problems, in many ways more easily and more naturally
than through the GUI They can select problems to work on, request advice on the
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Hello.

Hey there.

Show me the active plans.

Ok.

[CAMPS-MP displays a list of plans under development and returns their IDs and
descriptions to TRIPS.]

Let's work on the Georges plan.

Alright.

[CAMPS-MP main viewer focusses on Hurricane Georges deployment plan.]
Estimate resource needs.

[TRIPS requests the estimate from CAMPS-MP.]

Four C141s and 1 C5 will be needed.

[TRIPS forms its utterance using CAMPS-MP’s answer.]

Where can we get them?

[TRIPS sends a set of requests to the BARREL agent corresponding to the two sets
of (nominal) aircraft identified as “them”.]

There are one C5 from Travis, two C141's from McGuire, and three C141's
from Charleston.

[TRIPS integrates the BARREL'’s replies and formulates the response.]

Let's use two 141s from McGuire.

[TRIPS interprets “use” as a request to provide the given aircraft as resources for
scheduling, using the AUGMENT-PLANSEf#equest to CAMPS-MP.]

Ok. You still need one C5 and two C141s before we can schedule.

[TRIPS uses the original resource estimate to prompt the user for additional infor-
mation before invoking the scheduler.]

Use the C5 from Travis also.

Ok. You still need two C141s before we can schedule.

And use the 141s from Charleston.

[Once TRIPS believes the scheduling problem is sufficiently specified, it requests
that CAMPS-MP invoke the scheduler.]

12 requirements could not be scheduled.

[CAMPS-MP indicates the status of the plan after scheduling, which TRIPS sum-
marizes for the user.]

Show them to me.

Ok.

[CAMPS-MP displays the failed requirements in a table view.]

Explain PWNC-1.

[“PWNC-1"is the ID of one requirement to move cargo from Washington County
Regional Airport to Puerto Rico.]

C5s can't land at Washington County Regional.

Figure 5: Annotated TRIPS/CAMPS sample dialogue
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021 U: Let's use a C17 instead.
[This aircraft type can use a shorter runway.]

022 T: One requirement is still unscheduled.
[TRIPS locates a C17 by querying the BARREL, provides it to CAMPS-MP as a
resource, then invokes the scheduler again.]

023 U: Explain it.
[TRIPS identifies “it” as the failed requirement.]

024 T. C17s, C5s, and C141s cannot fly non-stop from Elmendorf to Roosevelt
Roads.
[Elmendorf AFB (source of the requirement) is in Alaska, Roosevelt Roads (desti-
nation of the requirement) is in Puerto Rico. The distance between them is too far
for the planes to fly without refueling.]

025 U: Show me a map.

026 T: Ok
[TRIPS invokes the CAMPS-MP map viewer with all the routes displayed.]

027 U: Use Charleston as an en-route stop.
[TRIPS makes Charleston available to CAMPS-MP as a refueling resource, and
reinvokes the scheduler.]

028 T. Ok. All requirements are scheduled.

Figure 5: Annotated TRIPS/CAMPS sample dialogue (cont.)

resources required to solve the problem, suggest particular assets to use, request
views of the state of problem definition and of the solutions produced, and receive
explanations when things don’t go as expected. TRIPS manages the interaction
with CAMPS-MP and the BARREL agent, and automatically invokes the scheduler
when it is appropriate.

This first-cut integration of TRIPS and CAMPS agents was developed in a rel-
atively short period of time (approximately three months) in part because of the
modular, agent-oriented construction of TRIPS itself. Aside from small efforts for
extending the vocabulary and language understanding modules, the main effort
was in “agent-ifying” the aiflift domain agents, CAMPS-MP and BARREL, and in
developing a specialized Problem Solving Agent that could do the required inter-
pretation and translation of user actions and airlift agent responses, in the context
of the airlift mission planner’s task.

The ongoing scientific focus of our effort is now on understanding the capa-
bilities needed in a problem solver that can manage this kind of interaction. In
particular, we are now developing a model of the overall problem solving task,
that can be used by a more general purpose problem solving agent to interpret
user requests in terms of a more declaratively described domain model and relate
these to models of the back-end agents.
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4 Major Technical Issues

The main focus of this paper is on “lessons learned” about the level of information
sharing required of the domain specific agents, and the kinds of reformulation
and translation of user requests that is required to facilitate naturalistic, mixed-
initiative dialogues with fieldable domain-specific planning/scheduling tools like
that shown in Figure 4. Although there are a few other systems, such as Quickset
[Cohen et al., 1997] and TRIPS itself, that have demonstrated some of these capabil-
ities, what is new here is the coupling of these largely domain-independent inter-
action modality-management agents with domain-specific planning systems that
were not originally designed for such coordinated, mixed-initiative, multi-agent
behavior.

4.1 “Agent-izing” the Mission Planner

The CAMPS Mission Planner system is itself composed of a GUI written in JAVA
and a server written in LISP. It was turned into a single agent by providing the
LISP server with a KQML interface. We developed a KQML API that provided
essentially a programmatic means of invoking the behaviors available through the
scheduler’s graphical user interface. This was done without explicit reference to
the internal representations manipulated by and shared among the TRIPS agents.
Table 1 shows a summary of the message signatures handled by the CAMPS-MP
agent. It includes a set of commands for manipulating the various views pro-
vided by the CAMPS-MP interface, a set of commands for describing new prob-
lems and revising old problems to be posed to the scheduler, a request for invok-
ing the scheduler, and queries for analyses of scheduler results and explanations
of problems found in those results.

The main information passing messages (NEW-PLANSETREVISE-PLANSET,
and AUGMENT-PLANSHTRII take as keyword arguments all of the different kinds
of data elements that define problems for the Mission Planner to solve. NEW-
PLANSETis used to create a new problem from scratch, while AUGMENT-PLANSET
is used to add ports, resources or requirements to an existing problem. REVISE-
PLANSETis used to replace one of the previously specified sets of values. We
believe that this interface is representative of the kind of interface that one will get
in practice when “wrapping” a legacy system. As such we saw it as a reasonable
target for the problem solver agent that it was to interact with.

We did add functionality to the CAMPS-MP system in several places to facili-
tate the kind of dialogue illustrated in Figure 5. The most important of these was
that we developed a capability to estimate the resource levels needed to solve the
scheduling problem. This capability is now being considered as a requirement for
the CAMPS Mission Planner that will be deployed next year (without the natural
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KQML Performative

Content Form

REQUEST (OPEN-VIEWER :VIEWER <VIEWER>)
REQUEST (FOCUS-VIEWER :VIEWER <VIEWER> ...
REQUEST (CLOSE-VIEWER :VIEWER <VIEWER>)
REQUEST (DISPLAY-TABLE :TITLE <STRING> :QUERY <SQL>)
REQUEST (MAP-FOCUS LATITUDE <LAT> :LONGITUDE <LON>
:ZOOM <FLOAT> :PLAN-ID <ID>)
INFORM (NEW-PLANSET :PLAN-ID <ID>
:START-DATE <DATE> :END-DATE <DATE>
‘PRIORITY <PRI>
‘REQUIREMENTS (<REQUIREMENT>*)
:AVAILABLE-ASSETS
((<ACTYPE> <QTY> <UNITID>
<START> <END>)¥)
‘AVAILABLE-PORTS
((<LOCID> <NAME> <ENROUTE?> ...)%
)
INFORM (REVISE-PLANSET keywords same as NEW-PLANSET)
INFORM (AUGMENT-PLANSETkeywords same as NEW-PLANSET)
ASK-ONE (FLIGHT-PLAN :PLAN-ID <ID>)
ASK-ALL (LIST-PLANSETS :FIELDS ..)
REQUEST (SHOW-PLANSETS :PLAN-TYPE <str>
‘NEW-SINCE <time>
:CHANGED-SINCE <time>...)
REQUEST (ANALYZE-PLAN :PLAN-ID <ID>)
REQUEST (SHOW-UNSATISFIED-REQUIREMENTS :PLAN-ID <ID>)
REQUEST (SCHEDULE-AIRLIFT :PLAN-ID <ID>)
REQUEST (ESTIMATE-RESOURCES :PLAN-ID <ID>)
REQUEST (EXPLAIN :OBJECT (UNSATISFIED :REQ-ID <ID>))

Table 1: Summary of KQML interface to CAMPS-MP
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language interface). We also added several new graphical views to summarize in
tabular form queries that seemed natural to ask for in English, such as the view
showing the “open problems list” that is requested at the beginning of the sample
dialogue.

4.2 Supporting Mixed-Initiative Explanation

Unlike the legacy scheduling system that the CAMPS Mission Planner is being de-
veloped to replace, CAMPS-MP included a capability to generate simple explana-
tions of scheduler failures prior to this integration experiment. This was important
for the mixed-initiative interactions we sought to demonstrate. CAMPS-MP gen-
erates explanations for unscheduled or late requirements by looking for necessary
constraints in the problem statement (the scheduler inputs) that make it impossible
for the scheduler to successfully schedule flights for all of the requirements. These
constraints are those that must be satisfied to form a sequences of flights by an
aircraft going from its home base to the cargo to be moved, loading and move the
cargo to its destination, and then returning the aircraft to its base. The constraints
currently checked for explanation generation are:

e The availability of an aircraft with appropriate carrying capacity for the kind
of cargo to be moved. The natural user response to this kind of constraint
failure is to introduce a new kind of asset as an available resource in the
statement of the problem.

e The capability of an appropriate aircraft to land at all ports along the route.
This is checked by comparing the maximum runway length of the port to
the minimum runway length required. Again, the appropriate repair is to
introduce an aircraft of a type that can land at all ports along the route.

e The capability of the aircraft to fly the distances between each port along its
route without refueling. The CAMPS-MP scheduler will ordinarily attempt
to land the aircraft at an en-route stop, or use an aerial refueling if either of
those options is provided at a location along the route. The repair here is
to introduce or designate such a location as part of the scheduler’s problem
description.

Of course, there are a number of other constraints that can interact to produce
scheduling failures (see Emerson and Burstein, 1999). Explaining these more com-
plex failures is an ongoing topic of the CAMPS-MP development effort. Given that
this preliminary explanation facility already existed, the main change required for
the integration of TRIPS and CAMPS-MP was the production of those explanations
in a declarative representation, suitable for inclusion in a KQML message, rather
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than directly as “canned” text messages to the user. For the limited set of con-
straints now handled, this was easily accomplished. Responses to KQML queries
of the form

(ASK-ALL
:CONTENT (EXPLAIN :OBJECT (UNSCHEDULED :REQ-ID <ID>))

refer to these constraint failures by one of the following:

(NOT (CAN-LAND-AT <ac types> <port>)) |
(NOT (CAN-FLY-NONSTOP <ac types> <portl> <port2>)) |
(NOT (CAN-CARRY-CARGO <ac types> <reqid>))

and these are in turn translated into English by the TRIPS generator, where their
content becomes part of the dialogue context. Ultimately, we would expect that the
problem solver could make more direct use of this information, to suggest or even
carry out the appropriate repairs, if no further user input is needed to proceed.

4.3 Context Sharing to Support Mixed-Initiative Interaction

Recall that our goal is to provide the user with a seamless view of the agents
at their disposal, by making the system itself an intelligent agent that interacts
with the user. A crucial issue in supporting this appearance while integrating
legacy systems is the need to share contextual information among the agents. Log-
ically, anything that the user sees becomes part of the shared dialogue context, and
he or she can refer to it in subsequent communications with the system. In the
TRIPS/CAMPS system, this issue arose during the design of the agentized Mis-
sion Planner’s API because the back-end domain agents hold much of the detailed
knowledge of the problem state and are responsible for displaying that information
graphically to the user. If the system had been engineered from scratch as a sin-
gle integrated system, so that all user displays were handled by a distinct agent,
the problem would have still occurred, but the required communications patterns
would have been different.

Consider what happens when the user requests a display of information, such
as the list of the active plans needing to be worked on, or a map of the scheduled
routes. All of the information displayed in the table generated by CAMPS-MP
becomes subject to reference as part of the current dialogue context. The model of
the problem solving task we are developing would suggest that the user actions
following a request for the list of active plans is either to select one of them to work
on, or to ask for more information about one or several of them. In either case, the
problem solver, the reference resolution agent, and perhaps even the speech and
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language agents require that the list of plans, including their IDs and names, are
known and are now salient.

To manage this in our prototype, we used the design principle that all mes-
sages requesting that displays be shown return, in addition to an acknowledg-
ment, a declaratively represented summary of the displayed information. Alterna-
tively, one might require that all agents displaying information be capable of being
queried for the content of their displays.

The larger issue is how this kind of information is uniformly made available
to all of the agents requiring it. We know of no general solution to this. In agent
architectures like the star topologies of TRIPS and OAA [Cohen et al., 1994], this
information could, in principle, be broadcast to all agents who care to use it. In net-
work communications architectures like RETSINA [Sycara et al., 1996], one might
require that some agent or set of agents serve as a blackboard or clearinghouse for
the information. Beyond the question of who gets the information, a key remaining
problem is that the descriptions of contextual items must include semantic infor-
mation. For example, the TRIPS components of our system need to know not only
that “PWNC-01" is being displayed, but also that it is a transport requirement, that
its status is unscheduled, and so on.

4.4 Problem Solving: Plan Recognition, Task Allocation, and Agent
Management

Most of the burden involved in actually helping the user with their task falls to the
Problem Solving (PS) agent. Its responsibilities in the TRIPS/CAMPS architecture
can be divided into three levels.

First, it is responsible for interacting with the Conversational Agent when the
latter determines that the interpretation of the current utterance involves domain-
level problem-solving. At this level, the Problem Solver checks whether the pro-
posed interpretation is plausible in the current problem-solving context. In gen-
eral, this requires some form of plan recognition. Although for the simplified airlift
mission planner’s task used in our integration experiment, simple heuristics were
sufficient, we are now building a more complete model of the task suitable for use
in this interpretation phase.

Second, if the interpretation seems to make sense, the Problem Solver must de-
termine how to meet its obligation to respond to it. This might involve modifying
the problem solving state, as in a suggestion to extend or modify the parameters of
the problem (e.g., “Use the C5 from Charleston also”), or determining the answer
toa query (e.g., “Where can we get them [the assets]?”), and so on. At this level, the
Problem Solver needs to use its knowledge of the problem solving state and of the
capabilities of the agents at its disposal to produce a plan for using those agents
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to fulfill its obligations. In most cases, this requires matching agent capabilities
against outstanding obligations, using some general principles for decomposing
tasks into pieces those agents can handle.

An interesting special case here is interactive plan repair. When the result of
the previous actions by the user and/or the system is the discovery of a problem
with the partial plan produced, the user may ask for (or, better yet, the system
may generate on its own) an explanation of the failure. The explanation sets the
context for some particular class(es) of repairs, as described in Section 4.2 above.
In the sample dialogue with the present system, essentially context-independent
interpretation of the user response “Use a C17 instead” allows the planning to
proceed, but a seemingly subtle change to “Use a C17” would be ambiguous, and
the system could not proceed. Without a model of the plausible repairs for the
failure, the system would not be able to prefer the substitution interpretation over
the addition of additional assets to the existing specification.

Finally, at the third level, the Problem Solver must execute this plan and actu-
ally interact with the agents to obtain the information needed to fulfill its obliga-
tions. This involves translating between the general-purpose representation used
by the Problem Solver and whatever APl is available from the agent being invoked.
Typically, multiple messages must be sent, since the Problem Solver’s obligations
come from the expressive language interface, whereas individual agent’s APIs are
usually quite simple. An example here is the interaction with the BARREL agent
to find available assets (“Where can we get them?”). The Problem Solver, having
resolved the reference to the list of notional assets estimated by CAMPS-MP to be
needed, must generate a sequence of queries to the BARREL to determine where
each type of asset can be found. The replies must be gathered and interpreted, and
the Problem Solver moves on to the next step in its plan (barring an unexpected
response or error indication, which would abort the plan or trigger other remedial
action, such as entering into a sub-dialogue with the user).

Once all the necessary information has been obtained, a suitable response must
be produced for use by the Conversational Agent in maintaining the dialogue con-
text and by the realization components for presentation to the user. The Problem
Solver returns both the plausibility estimate for each interpretation of the user’s
intent, as determined in Step 1, and an answer score indicating the quality of the
solution found in Steps 2 and 3. The Conversational Agent uses both of these val-
ues to select the preferred interpretation of the user’s utterance and produce an
appropriate response. When the response requires use of another agent’s display
capabilities (as with CAMPS displaying a map or table), the Problem Solver man-
ages the invocation of the other agent(s), with suitable translation and acknowl-
edgments.

In the initial demonstration system, Steps 2 and 3 of this process are not per-
formed as generally as described above. Instead, the Problem Solver has a single

41



model of the airlift mission planner’s task together with how the CAMPS-MP and
BARREL agents fit into that task. We are now developing a framework to support
declarative representation of the user’s problem solving task and of the capabilities
of the back-end agents, thereby permitting a more direct and general implementa-
tion of the problem solving model described above. One of the results of this work
will be a system that can more easily be used in a variety of mixed-initiative tasks
and with a dynamically changing set of back-end agents.

5 Conclusions and Directions

We have described an initial integration of the TRIPS agent framework for multi-
modal mixed-initiative control of planning support agents with several domain-
specific agents representing aspects of the airlift planning domain that were not
originally designed to work in such a framework. Our larger objectives here are
to develop the framework to support appropriate utilization of a wider variety of
agents in support of user objectives, and to utilize those agents more proactively
when the opportunities arise.

In the process, we have uncovered, or, in some cases, rediscovered, require-
ments for both the problem solver mediating between the user and these domain
agents, and for the capabilities of the domain agents that will be suitable for partic-
ipating in such systems. In particular, for “legacy agents,” we have discussed the
importance of information sharing between agents that can present information to
the user and the dialogue components, and the important role that a capability to
generate explanations can play in furthering the cooperative problem solving of
the user+agents team.

For the problem solver, we have again motivated the need for both capability
as well as use models for the agents it is directing. We believe that these models
will be utilized primarily in a reactive planning framework, with some outstand-
ing issues. First, the translation of user requests into subtasks for other agents in
general requires some amount of reformulation and decomposition to match the
API of the target agents. In part, this is a generative planning task not unlike that
found in systems for distributed information retrieval like SIMS and ARIADNE
[Arens et al., 1996; Ambite and Knoblock, 1997] It could perhaps be largely decou-
pled from the problem solver’s role in context-sensitive intent interpretation and
subgoal formation.

Second, and perhaps more problematic, is the development of a general frame-
work for the Problem Solver’s role in multi-modal response generation. Here, to
be cooperative in a mixed-initiative sense, the problem solver must be capable of
summarization (as when reporting the results of scheduling by characterizing the
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tailures), and also of directing the user to view salient visualizations, when they
are available through some agent at its disposal.

Finally, we see the development of task/use models in the problem solver as
providing excellent opportunities for improving the initiative of such systems. At
present, TRIPS/CAMPS takes initiative simply when it has enough information
to attempt calling the scheduler (based on a description of the scheduling capabil-
ity). A use model could predict when discovered failures should lead directly to
an (unprompted) request of MP for an explanation, and even potentially to rou-
tine repairs, when no further discrimination is required of the user. These models
could also perhaps be the locus for machine learning about appropriate times for
initiative, if a system like TRIPS/CAMPS was routinely used to solve similar kinds
of scheduling problems, as would undoubtedly be the case in the airlift domain.
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ABSTRACT

In this paper, we describe an architecture for conversational
systems that enables human-like performance along several
important dimensions. First, interpretation is incremental,
multi-level, and involves both general and task- and domain-
specific knowledge. Second, generation is also incremental,
proceeds in parallel with interpretation, and accounts for
phenomena such as turn-taking, grounding and interrup-
tions. Finally, the overall behavior of the system in the
task at hand is determined by the (incremental) results of
interpretation, the persistent goals and obligations of the
system, and exogenous events of which it becomes aware. As
a practical matter, the architecture supports a separation of
responsibilities that enhances portability to new tasks and
domains.

Keywords

Architectures for intelligent, cooperative, distributed, and
multimodal interfaces; conversational systems

1. INTRODUCTION

Our goal is to design and build systems that approach
human performance in conversational interaction. We limit
our study to practical dialogues: dialogues in which the con-
versants are cooperatively pursuing specific goals or tasks.
Applications involving practical dialogues include planning
(e.g. designing a kitchen), information retrieval (e.g. finding
out the weather), customer service (e.g. booking an airline
flight), advice-giving (e.g. helping assemble modular furni-
ture) or crisis management (e.g. a 911 center). In fact, the
class of practical dialogues includes almost anything about
which people might want to interact with a computer.

TRIPS, The Rochester Interactive Planning System [6], is
an end-to-end system that can interact robustly and in near
real-time using spoken language and other modalities. It has
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participated successfully in dialogues with untrained users
in several different simple problem solving domains. Our
experience building this system, however, revealed several
problems that motivated the current work.

1.1 Incrementality

Like most other dialogue systems that have been built,
TRIPS enforces strict turn taking between user and system,
and processes each utterance sequentially through three stages:
interpretation—dialogue management—generation. Unfortu-
nately, these restrictions make the interaction unnatural and
stilted, and will ultimately interfere with the user’s ability
to focus on the problem itself rather than on making the
interaction work. We want an architecture that allows a
more natural form of interaction; this requires incremental
understanding and generation with flexible turn-taking.

Here are several examples of human conversation that il-
lustrate some of the problems with processing in stages. All
examples are taken from a corpus collected in an emergency
management task set in Monroe County, NY [17]. Plus signs
(+) denote simultaneous speech, and “,” denotes silence.

First, in human-human conversation participants frequently
ground (confirm their understanding of) each other’s con-
tributions using utterances such as “okay” and “mm-hm”.
Clearly, incremental understanding and generation are re-
quired if we are to capture this behavior. In the following
example, A acknowledges each item in B’s answers about
locations where there are road outages.

Excerpt from Dialogue s16

: can you give me the first uh |, outage
okay

so Elmwood bridge

: okay

um ., Thurston road

: mm-hm

+ Three Eighty 4+ Three at Brooks
¢ + okay +

: mm-hm

and Four Ninety at the inner ., loop
okay

pErrEEE>EE>

Second, in human-human dialogues the responder frequently
acknowledges the initiator’s utterance immediately after it
is completed and before they have performed the tasks they



need to do to fully respond. In the next excerpt, A asks
for problems other than road outages. B responds with an
immediate acknowledgment. Evidence of problem solving
activity is revealed by B smacking their lips (“lipsmack”)
and silence, and then B starts to respond to the request.

Excerpt from Dialogue s16

A: and what are the |, other um |, did you have
just beside road +1 outages +1

B: +; okay +1 <lipsmack> , um Three Eighty
Three and Brooks +2 , is +2 a (, road out
L and an electric line down

A: +5 Brooks mm hm +»

A: okay

A sequential architecture, requiring interpretation and prob-
lem solving to be complete before generation begins, cannot
produce this behavior in any principled way.

A third example involves interruptions, where the initiator
starts to speak again after the responder has formulated a
response and possibly started to produce it. In the example
below, B starts to respond to A’s initial statement but then
A continues speaking.

Excerpt from Dialogue s6

: and he’s going to pull the tree
mm hm

and + there’s mm -+

: + so  he’ll be + done at |, um , he’s going
to be done at , in forty minutes

> ww e

We believe effective conversational systems are going to
have to be able to interact in these ways, which are perfectly
natural (in fact are the usual mode of operation) for humans.
It may be that machines will not duplicate human behavior
exactly, but they will realize the same conversational goals
using the communication modalities they have. Rather than
saying “uh-huh,” for instance, the system might ground a
referring expression by highlighting it on a display. Note
also that the interruption example requires much more than
a “barge-in” capability. B needs to interpret A’s second
utterance as a continuation of the first, and does not simply
abandon its goal of responding to the first. When B gets
the turn, B may decide to still respond in the same way, or
to modify its response to account for new information.

1.2 Initiative

Another reason TRIPS does not currently support com-
pletely natural dialogue is that, like most other dialogue
systems, it is quite limited in the form of mixed-initiative
interaction it supports. It supports taking discourse-level
initiative (cf. [3]) for clarifications and corrections, but does
not allow shifting of task-level initiative during the inter-
action. The reason is that system behavior is driven by
the dialogue manager, which focuses on interpreting user
input. This means that the system’s own independent goals
are deemphasized. The behavior of a conversational agent
should ideally be determined by three factors, not just one:
the interpretation of the last user utterance (if any), the
agent’s own persistent goals and obligations, and exogenous
events of which it becomes aware.

For instance, in the Monroe domain, one person often
chooses to ignore the other person’s last utterance and leads
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the conversation to discuss some other issue. Sometimes

they explicitly acknowledge the other’s contribution and promise

to address it later, as in the following;:

Excerpt from Dialogue s16

A: can you ,, +1 can +1 you go over the ., the
thing +2 for me again 42

B: +1i+1

B: 42 yeah in one +2 minute

B: i have to , clarify at the end here ....

In other cases, they simply address some issue they appar-
ently think is more important than following the other’s
lead, as in the following example where B does not address
A’s suggestion about using helicopters in any explicit way.

Excerpt from Dialogue s12

A: we can we , we can either uh
A : i guess we have to decide how to break up
this
A: we can _, make three trips with a helicopter
B: soiguess we should send one ambulance straight
off |, to , marketplace right , now , right

1.3 Portability

Finally, on a practical note, while TRIPS was designed
to separate discourse interpretation from task and domain
reasoning, in practice domain- and task-specific knowledge
ended up being used directly in the dialogue manager. This
made it more difficult to port the system to different do-
mains and also hid the difference between general domain-
independent discourse behavior and task-specific behavior
in a particular domain.

To address these problems, we have developed a new archi-
tecture for the “core” of our conversational system that in-
volves asynchronous interpretation, generation, and system
planning/acting processes. This design simplifies the incre-
mental development of new conversational behaviors. In ad-
dition, our architecture has a clean separation between dis-
course modeling and task/domain levels of reasoning, which
(a) enhances our ability to handle more complex domains,
(b) improves portability between domains; and (c) allows
for richer forms of task-level initiative.

The remainder of this paper describes our new architec-
ture in detail. The next section presents an overview of the
design and detailed descriptions of the major components.
A brief but detailed example illustrates the architecture in
action. We conclude with a discussion of related work on
conversational systems and the current status of our imple-
mentation.

2. ARCHITECTURE DESCRIPTION

As mentioned previously, we have been developing conver-
sational agents for some years as part of the TRAINS [7] and
TRIPS [6] projects. TRIPS is designed as a loosely-coupled
collection of components that exchange information by pass-
ing messages. There are components for speech processing
(both recognition and synthesis), language understanding,
dialogue management, problem solving, and so on.

In previous versions of the TRIPS system, the Dialogue
Manager component (DM) performed several functions:

e Interpretation of user input in context



e Maintenance of discourse context

e Planning the content (but not the form) of system re-
sponses

e Managing problem solving and planning

Having all these functions performed by one component led
to several disadvantages. The distinction between domain
planning and discourse planning was obscured. It became
difficult to improve interpretation and response planning,
because the two were so closely knit. Incremental process-
ing was difficult to achieve, because all input had to pass
through the DM (even if no domain reasoning was going to
occur, but only discourse planning). Finally, porting the sys-
tem to new tasks and domains was hampered by the inter-
connections between the various types of knowledge within
the DM.

The new core architecture of TRIPS is shown in Figure 1.
There are three main processing components. The Interpre-
tation Manager (IM) interprets user input as it arises. It
broadcasts the recognized speech acts and their interpreta-
tion as problem solving actions, and incrementally updates
the Discourse Context. The Behavioral Agent (BA) is most
closely related to the autonomous “heart” of the agent. It
plans system behavior based on its goals and obligations,
the user’s utterances and actions, and changes in the world
state. Actions that involve communication and collabora-
tion with the user are sent to the Generation Manager (GM).
The GM plans the specific content of utterances and dis-
play updates. Its behavior is driven by discourse obligations
(from the Discourse Context), and directives it receives from
the BA. The glue between the layers is an abstract model
of problem solving in which both user and system contribu-
tions to the collaborative task can be expressed.

All three components operate asynchronously. For in-
stance, the GM might be generating an acknowledgment
while the BA is still deciding what to do. And if the user
starts speaking again, the IM will start interpreting these
new actions. The Discourse Context maintains the shared
state needed to coordinate interpretation and generation.

In the remainder of this section, we describe the major
components in more detail, including descriptions of the Dis-
course Context, Problem Solving Model, and Task Manager.

2.1 Discourse Context

The TRIPS Discourse Context provides information to co-
ordinate the system’s conversational behavior. First, it sup-

plies sufficient information to generate and interpret anaphoric

expressions and to interpret forms of ellipsis. Given the real-
time nature of the interactions, and the fact that the system
may have its own goals and receive reports about external
events, the discourse context must also provide information
about the status of the turn (i.e. can I speak now or should
I wait?), and what discourse obligations are currently out-
standing (cf. [19]). The latter is especially important when
the system chooses to pursue some other goal (e.g. notifying
the user of an accident) rather than perform the expected di-
alogue act (e.g. answering a question); to be coherent and co-
operative, the system should usually still satisfy outstanding
discourse obligations, even if this is done simply by means of
an apology. Finally, as we move towards open-mike interac-
tive systems, we must also identify and generate appropriate
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grounding behaviors. To support these needs, the TRIPS
discourse context contains the following information:

1. A model of the current salient entities in the discourse,
to support interpretation and generation of anaphoric
expressions;

2. The structure and interpretation of the immediately
preceding utterance, to support ellipsis resolution and
clarification questions;

3. The current status of the turn—whether it is assigned
to one conversant or currently open.

4. A discourse history consisting of the speech-act inter-
pretations of the utterances in the conversation so far,
together with an indication of which utterances have
been grounded;

5. The current discourse obligations, typically to respond
to the other conversant’s last utterance. Obligations
may act as a stack during clarification subdialogues, or
short-term interruptions, but this stack never becomes
very large.

This is a richer discourse model than found in most sys-
tems (although see [12] for a model of similar richness).

2.2 Abstract Problem Solving Model

The core modules of the conversational agent, the IM, BA
and GM, use general models of collaborative problem solv-
ing, but these models remain at an abstract level, common
to all practical dialogues. This model is formalized as a set
of actions that can be performed on problem solving objects.
The problem solving objects include objectives (goals being
pursued), solutions (proposed courses of action or structures
that may achieve an objective), resources (objects used in
solutions, such as trucks for transportation, space in kitchen
design), and situations (settings in which solutions are used
to attain objectives).



In general, there are a number of different actions agents
can perform as they collaboratively solve problems. Many
of these can apply to any problem solving object. For exam-
ple, agents may create new objectives, new solutions, new
situations (for hypothetical reasoning) and new resources
(for resource planning). Other actions in our abstract prob-
lem solving model include select (e.g.focus on a particu-
lar objective), evaluate (e.g. determine how long a solution
might take), compare (e.g. compare two solutions to the
same objective), modify (e.g. change some aspect of a so-
lution, change what resources are available), repair (e.g. fix
an old solution so that it works) and abandon (e.g. give up
on an objective, throw out a possible solution)l. Because
we are dealing with collaborative problem solving, not all
of these actions can be accomplished by one agent alone.
Rather, one agent needs to propose an action (the agent is
said to initiate the collaborative act), and the other accept
it (the other agent completes the collaborative act).

There are also explicit communication acts involved in
collaborative problem solving. Like all communicative acts,
these acts are performed by a single agent, but are only suc-
cessful if the other agent understands the communication.
The main communication acts for problem solving include
describe (e.g. elaborate on an objective, describe a particu-
lar solution), ezplain (e.g. provide a rationale for a solution
or decision), and identify (e.g. communicate the existence of
a resource, select a goal to work on). These communication
acts, of course, may be used to accomplish other problem
solving goals as well. For instance, one might initiate the
creation of an objective by describing it.

2.3 Task Manager

The behaviors of the IM, BA and GM are defined in terms
of the abstract problem solving model. The details of what
these objects are in a particular domain, and how operations
are performed, are specified in the Task Manager (TM). The
TM supports operations intended to assist in both the recog-
nition of what the user is doing with respect to the task at
hand and the execution of problem solving steps intended
to further progress on the task at hand.

Specifically, the Task Manager must be able to:

1. Answer queries about objects and their role in the
task/domain (e.g. is an ambulance a resource? Is load-
ing a truck an in-domain plannable/executable action?
Is “evacuating a city” a possible in-domain goal?)

2. Provide the interface between the generic problem solv-
ing acts used by the BA (e.g. create a solution) and
the actual task-specific agents that perform the tasks
(e.g. build a course of action to evacuate the city using
two trucks)

3. Provide intention recognition services to the IM (e.g.
can “going to Avon” plausibly be an extension of the
current course of action?)

In our architecture, the Task Manager maps abstract prob-
lem solving acts onto the capabilities of the knowledge-based
agents at its disposal. For example, in one of our planning

'This list is not meant to be exhaustive, although it has
been developed based on our experiences building systems
in several problem solving domains.
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domains, the Task Manager uses a planner, router, sched-
uler, and temporal knowledge base to answer queries and
create or modify plans.

2.4 Interpretation Manager

The Interpretation Manager (IM) interprets incoming parsed

utterances and generates updates to the Discourse Context.
First, it produces turn-taking information. With a push-
to-talk interface this is simple. When the user presses the
button they have taken the turn; when they release it they
have released the turn. As we move to open-mike, identify-
ing turn-taking behavior will require more sophisticated in-
terpretation. TRIPS uses an incremental chart parser that
will assist in this process by broadcasting constituents as
they are recognized.

The principal task of the IM, however, is to identify the
intended speech act, the collaborative problem solving act
that it furthers, and the system’s obligations arising from
the interaction. For instance, the utterance “The bridge
over the Genesee is blocked” would be interpreted in some
circumstances as a problem statement, the intention being
to initiate replanning. The IM would broadcast a discourse-
level obligation to respond to a statement, and announce
that the user has initiated the collaborative problem solving
act of identifying a problem as a means of initiating replan-
ning (say, to change the route currently planned). In other
circumstances, the same utterance might be recognized as
the introduction of a new goal (i.e. to reopen the bridge).
The rules to construct these interpretations are based on
the abstract problem solving model and specific decisions
are made by querying the Task Manager. For instance, in
the above example, key questions might be “is there an exist-
ing plan using the bridge?” (an affirmative answer indicates
the replanning interpretation) and “is making the bridge
available a reasonable high-level goal in this domain?” (an
affirmative answer indicates the introduce-goal interpreta-
tion).

2.5 Generation Manager

The Generation Manager (GM), which performs content
planning, receives problem solving goals requiring genera-
tion from the Behavioral Agent (BA) and discourse obli-
gations from the Discourse Context. The GM’s task is to
synthesize these input sources and produce plans (sequences
of discourse acts) for the system’s discourse contributions.

Because the GM operates asynchronously from the IM, it
can be continuously planning. For instance, it is informed
when the user’s turn ends and can plan simple take-turn and
keep-turn acts even in the absence of further information
from the IM or the BA, using timing information.

In the case of grounding behaviors and some conventional
interactions (e.g. greetings), the GM uses simple rules based
on adjacency pairs; no reference to the problem solving state
is necessary. In other cases, it may need information from
the BA in order to satisfy a discourse obligation. It may
also receive goals from the Behavioral Agent that it can
plan to satisfy even in the absence of a discourse obligation,
for instance when something important changes in the world
and the BA wants to notify the user.

The GM can also plan more extensive discourse contri-
butions using rhetorical relations expressed as schemas, for
instance to explain a fact or proposal or to motivate a pro-
posed action. It has access to the discourse context as well



as to sources for task- and domain-level knowledge.

When the GM has constructed a discourse act or set of
acts for production, it sends the act(s) and associated con-
tent to the Response Planner, which performs surface gen-
eration. The RP comprises several subcomponents; some
are template-based, some use a TAG-based grammar, and
one performs output selection and coordination. It can re-
alize turn-taking, grounding and speech acts in parallel and
in real-time, employing different modalities where useful. It
can produce incremental output at two levels: it can pro-
duce the output for one speech act before others in a plan
are realized; and where there is propositional content, it can
produce incremental output within the sentence (cf. [10]). If
a discourse act is realized and produced successfully, the GM
is informed and sends an update to the Discourse Context.

2.6 Behavioral Agent

As described above, the Behavioral Agent (BA) is respon-
sible for the overall problem solving behavior of the system.
This behavior is a function of three aspects of the BA’s
environment: (1) the interpretation of user utterances and
actions in terms of problem solving acts, as produced by the
Interpretation Manager; (2) the persistent goals and obliga-
tions of the system, in terms of furthering the problem solv-
ing task; (3) Exogenous events of which the BA becomes
aware, perhaps by means of other agents monitoring the
state of the world or performing actions on the BA’s behalf.

As we noted previously, most dialogue systems (including
previous versions of TRIPS) respond primarily to the first
of these sources of input, namely the user’s utterances. In
some systems (including previous versions of TRIPS) there
is some notion of the persistent goals and/or obligations of
the system. Often this is implicit and “hard-coded” into the
rules governing the behavior of the system. In realistic con-
versational systems, however, these would take on a much
more central role. Just as people do, the system must juggle
its various needs and obligations and be able to talk about
them explicitly.

Finally, we think it is crucial that conversational systems
get out into the world. Rather than simply looking up an-
swers in a database or even conducting web queries, a con-
versational system helping a user with a real-world task is
truly an agent embedded in the world. Events occur that
are both exogenous (beyond its control) and asynchronous
(occurring at unpredictable times). The system must take
account of these events and integrate them into the conver-
sation. Indeed in many real-world tasks, this “monitoring”
function constitutes a significant part of the system’s role.

The Behavioral Agent operates by reacting to incoming
events and managing its persistent goals and obligations. In
the case of user-initiated problem solving acts, the BA de-
termines whether to be cooperative and how much initiative
to take in solving the joint problem. For example, if the user
initiates creating a new objective, the system can complete
the act by adopting a new problem solving obligation to find
a solution. It could, however, take more initiative, get the
Task Manager to compute a solution (perhaps a partial or
tentative one), and further the problem solving by proposing
the solution to the user.

The BA also receives notification about events in the world
and chooses whether to communicate them to the user and/or
adopt problem solving obligations about them. For exam-
ple, if the system receives a report of a heart attack victim

needing attention, it can choose to simply inform the user
of this fact (and let them decide what to do about it). More
likely, it can decide that something should be done about the
situation, and so adopt the intention to solve the problem
(i.e. get the victim to a hospital).

Thus the system’s task-level initiative-taking behavior is
determined by the BA, based on the relative priorities of
its goals and obligations. These problem-solving obligations
determine how the system will respond to new events, in-
cluding interpretations of user input.

2.7 Infrastructure

The architecture described in this paper is built on an ex-
tensive infrastructure that we have developed to support
effective communication between the various components
making up the conversational system. Space precludes an
extended discussion of these facilities, but see [1] for further
details.

System components communicate using the Knowledge
Query and Manipulation Language (KQML [11]), which pro-
vides a syntax and high-level semantics for messages ex-
changed between agents. KQML message traffic is medi-
ated by a Facilitator that sits at the hub of a star topology
network of components. While a hub may seem to be a
bottleneck, in practice this has not been a problem. On
the contrary, the Facilitator provides a variety of services
that have proven indispensable to the design and develop-
ment of the overall system. These include: robust initial-
ization, KQML message validation, naming and lookup ser-
vices, broadcast facilities, subscription (clients can subscribe
in order to receive messages sent by other clients), and ad-
vertisement (clients may advertise their capabilities).

The bottom line is that an architecture for conversational
systems such as the one we are proposing in this paper would
be impractical, if not impossible, without extensive infras-
tructure support. While these may seem like “just imple-
mentation details,” in fact the power and flexibility of the
TRIPS infrastructure enables us to design the architecture
to meet the needs of realistic conversation and to make it
work.

3. EXAMPLE

An example will help clarify the relationships between the
various components of our architecture and the information
that flows between them, as well as the necessity for each.

Consider the situation in which the user asks “Where are
the ambulances?” First, the speech recognition components
notice that the user has started speaking. This is inter-
preted by the Interpretation Manager as taking the turn, so
it indicates that a TAKE-TURN event has occurred:

(tell (done (take-turn :who user)))

The Generation Manager might use this information to can-
cel or delay a planned response to a previous utterance. It
can also be used to generate various grounding behaviors
(e.g. changing a facial expression, if such a capability is sup-
ported). When the utterance is completed, the IM interprets
the user’s having stopped speaking as releasing the turn:

(tell (done (release-turn :who user)))

At this point, the GM may start planning (or executing) an
appropriate response.



The Interpretation Manager also receives a logical form
describing the surface structure of this request for infor-
mation. It performs interpretation in context, interacting
with the Task Manager. In this case, it asks the Task Man-
ager if ambulances are considered resources in this domain.
With an affirmative response, it interprets this question as
initiating the problem solving act of identifying relevant re-
sources. Note that contextual interpretation is critical—the
user wants to know where the usable ambulances are, not
where all known ambulances might be. The IM then gener-
ates:

1. A message to the Discourse Context recording the user’s
utterance in the discourse history together with its
structural analysis from the parser.

2. A message to the Discourse Context that the system
now has an obligation to respond to the question:

(tell
(introduce-obligation
:id OBLIG1
:who system
:what (respond-to
(wh-question
:id UTT1
:who user
:what (at-loc (the-set 7x
(type ?x ambulance))
(wh-term 71
(type 71 location)))
:why (initiate PS1)))))

This message includes the system’s obligation, a repre-
sentation of the content of the question, and a connec-
tion to the recognized problem solving act (defined in
the message described next). The IM does not specify
how the obligation to respond to the question should
be discharged.

3. A message to the Behavioral Agent that the user has
initiated a collaborative problem solving act, namely
attempting to identify a resource:

(tell
(done
(initiate
:who user
:what (identify-resource
:id PS1
:what (set-of 7x
(type ?x ambulance))))))

This message includes the problem solving act recog-
nized by the IM as the user’s intention, and a repre-
sentation of the content of the question.

When the Discourse Context receives notification of the
new discourse obligation, this fact is broadcast to any sub-
scribed components, including the Generation Manager. The
GM cannot answer the question without getting a response
from the Behavioral Agent. So it adopts the goal of answer-
ing, and waits for information from the BA. While waiting,
it may plan and produce an acknowledgment of the question.

When the Behavioral Agent receives notification that the
user has initiated a problem solving act, one of four things
can happen depending on the situation. We will consider
each one in sequence.
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Do the Right Thing It may decide to “do its part” and
try to complete (or at least further) the problem solv-
ing. In this case, it would communicate with other
components to answer the query about the location of
the ambulances, and then send the GM a message like:

(request
(identify-resource
:who system
:what (and
(at-loc amb-1 rochester)
)
:why (complete :who system :what PS1)))

The BA expects that this will satisfy its problem solv-
ing goal of completing the identify-resources act ini-
tiated by the user, although it can’t be sure until it
hears back from the IM that the user understood the
response.

Clarification The BA may try to identify the resource but
fail to do so. If a specific problem can be identified as
having caused the failure, then it could decide to ini-
tiate a clarification to obtain the information needed.
For instance, say the dialogue has so far concerned a
particular subtask involving a particular type of am-
bulances. It might be that the BA cannot decide if
it should identify just the ambulances of the type for
this subtask, or whether the user wants to know where
all usable ambulances are. So it might choose to tell
the GM to request a clarification. In this case, the BA
retains its obligation to perform the identify-resources
act.

Failure On the other hand, the BA may simply fail to iden-
tify the resources that the user needs. For instance, the
agents that it uses to answer may not be responding,
or it may be that the question cannot be answered. In
this case, it requests the GM to notify the user of fail-
ure, and abandons (at least temporarily) its problem
solving obligation.

Ignoring the Question Finally, the BA might decide that
some other information is more important, and send
that information to the GM (e.g. if a report from the
world indicates a new and more urgent task for the user
and system to respond to). In this case, the BA retains
the obligation to work on the pending problem solv-
ing action, and will return to it when circumstances
permit.

Whatever the situation, the Generation Manager receives
some abstract problem solving act to perform. It then needs
to reconcile this act with its discourse obligation OBLIG1.
Of course, it can satisfy OBLIG1 by answering the ques-
tion. It can also satisfy OBLIG1 by generating a clarifica-
tion request, since the clarification request is a satisfactory
response to the question. (Note that the obligation to an-
swer the original question is maintained as a problem solv-
ing goal, not a discourse obligation). In the case of a failure,
OBLIG1 could be satisfied by generating an apology and a
description of the reason the request could not be satisfied.
If the BA ignores the question, the GM might apologize
and add a promise to address the issue later, before produc-
ing the unrelated information. The apology would satisfy
OBLIGI1. For a very urgent message (e.g. a time critical



warning), it might generate the warning immediately, leav-
ing the discourse obligation OBLIG1 unsatisfied, at least
temporarily.

The GM sends discourse acts with associated content to

the Response Planner, which produces prosodically-annotated

text for speech synthesis together with multimodal display
commands. When these have been successfully (or partially
in the case of a user interruption) produced, the GM is in-
formed and notifies the Discourse Context as to which dis-
course obligations should have been met. It also gives the
Discourse Context any expected user obligations that result
from the system’s utterances.

The Interpretation Manager uses knowledge of these ex-
pectations to aid subsequent interpretation. For example,
if an answer to the user’s question is successfully produced,
then the user has an obligation to acknowledge the answer.
Upon receiving an acknowledgment (or inferring an implicit
acknowledge), the IM notifies the Discourse Context that
the obligation to respond to the question has truly been
discharged, and might notify the BA that the collaborative
“Identify-Resource” act PS1 has been completed.

4. IMPLEMENTATION

The architecture described in this paper arose from a long-
term effort in building spoken dialogue systems. Because
we have been able to easily port most components from our
previous system into the new one, the system itself has a
wide range of capabilities that were already present in ear-
lier versions. Specifically, it handles robust, near real-time
spontaneous dialogue with untrained users as they solve sim-
ple tasks such as trying to find routes on a train map and
planning evacuation of personnel from an island (see [1] for
an overview of the different domains we have implemented).
The system supports cooperative, incremental development
of plans with clarifications, corrections, modifications and
comparison of different options, using unrestricted, natural
language (as long as the user stays focussed on the task at
hand). The new architecture extends our capabilities to bet-
ter handle the incremental nature of interpretation, the fact
that interpretation and generation must be interleaved, and
the fact that realistic dialogue systems must also be part
of a broader outside world that is not static. The new ar-
chitecture further clarifies the separation between linguistic
and discourse knowledge on one hand, and task and domain
knowledge on the other.

We demonstrated an initial implementation of our new
architecture in August 2000, providing the dialogue capa-
bilities for an emergency relief planning domain which used
simulation, scheduling, and planning components built by
research groups at other institutions. Current work involves
extending the capabilities of individual components (the BA
and GM in particular) and porting the system to a more
complex emergency-handling domain [17].

5. RELATED WORK

Dialogue systems are now in use in many applications.
Due to space constraints, we have selected only some of these
for comparison to our work. They cover a range of domains,
modalities and dialogue management types:

e Information-seeking systems [2, 5, 8, 9, 13, 15, 16] and
planning systems [4, 14, 18];
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e Speech systems [13, 14, 15, 16], multi-modal systems
[5, 8, 18] and embodied conversational agents [2, 9];

e Systems that use schemas or frames to manage the
dialogue [9, 13, 14, 16], ones that use planning [4],
ones that use models of rational interaction [15], and
ones that use dialogue grammars or finite state models
[5, 8, 18].

Most of the systems we looked at use a standard interpretation—

dialogue management—generation core, with the architec-
ture being either a pipeline or organized around a message-
passing hub with a pipeline-like information flow. Our ar-
chitecture uses a more fluid processing model, which enables
the differences we outline below.

5.1 Separation of domain/task reasoning from
discourse reasoning

Since many dialogue systems are information-retrieval sys-
tems, there may be fairly little task reasoning to perform.
For that reason, although many of these systems have do-
main models or databases separate from the dialogue man-
ager [5, 8, 9, 13, 15, 16], they do not have separate task
models. By contrast, our system is designed to be used in
domains such as planning, monitoring, and design, where
task-level reasoning is crucial not just for performing the
task but also for interpreting the user’s utterances. Separa-
tion of domain knowledge and task reasoning from discourse
reasoning — through the use of our Task Manager, various
world models, the abstract problem solving model and the
Behavioral Agent — allows us access to this information with-
out compromising portability and flexibility.

CommandTalk [18], because it is a thin layer over a stand-
alone planner-simulator, has little direct involvement in task
reasoning. However, the dialogue manager incorporates some
domain-dependent task reasoning, e.g. in the discourse states
for certain structured form-filling dialogues.

In the work of Cassell et al [2], the response planner per-
forms deliberative task and discourse reasoning to achieve
communicative and task-related goals. In our architecture,
there is a separation between task- and discourse-level plan-
ning, with the Behavioral Agent handling the first type of
goal and the Generation Manager the other.

Chu-Carroll and Carberry’s CORE [4] is not a complete
system, but does have a specification for input to the re-
sponse planner that presumably would come from a dialogue
manager. The input specification allows for domain, prob-
lem solving, belief and discourse-level intentions. Our Inter-
pretation and Generation Managers reason over discourse-
level intentions; they obtain information about domain, prob-
lem solving and belief intentions from other modules.

The CMU Communicator system has a dialogue manager,
but uses a set of domain agents to “handle all domain-
specific information access and interpretation, with the goal
of excluding such computation from the dialogue manage-
ment component” [14]. However, the dialogue manager uses
task- or domain-dependent schemas to determine its behav-
ior.

5.2 Separationof interpretation from response-
planning
Almost all the systems we examined combine interpreta-
tion with response planning in the dialogue manager. The
architecture outlined by Cassell et al [2], however, separates



the two. It includes an understanding module (performing
the same kinds of processing performed by our Interpreta-
tion Manager); a response planner (performing deliberative
reasoning); and a reaction module (which performs action
coordination and handles reactive behaviors such as turn-
taking). We do not have a separate component to process
reactive behaviors; we get reactive behaviors because dif-
ferent types of goals take different paths through our sys-
tem. Cassell et al’s “interactional” goals (e.g. turn-taking,
grounding) are handled completely by the discourse com-
ponents of our system (the Interpretation and Generation
Managers); the handling of their “propositional” goals may
involve domain or task reasoning and therefore will involve
our Behavioral Agent and problem-solving modules.
Fujisaki et al [8] divide discourse processing into a user
model and a system model. As in other work [4, 15], this is
an attempt to model the beliefs and knowledge of the agents
participating in the discourse, rather than the discourse it-
self. However, interpretation must still be completed be-
fore response planning begins. Furthermore, the models of
user and system are finite-state models; for general conver-
sational agents more flexible models may be necessary.

6. CONCLUSIONS

We have described an architecture for the design and im-
plementation of conversational systems that participate ef-
fectively in realistic practical dialogues. We have empha-
sized the fact that interpretation and generation must be
interleaved and the fact that dialogue systems in realistic
settings must be part of and respond to a broader “world
outside.” These considerations have led us to an architecture
in which interpretation, generation, and system behavior are
functions of autonomous components that exchange infor-
mation about both the discourse and the task at hand. A
clean separation between linguistic and discourse knowledge
on the one hand, and task- and domain-specific information
on the other hand, both clarifies the roles of the individ-
ual components and improves portability to new tasks and
domains.
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ABSTRACT

This paper describes a model of problem solving for use in
collaborative agents. It is intended as a practical model for
use in implemented systems, rather than a study of the the-
oretical underpinnings of collaborative action. The model
is based on our experience in building a series of interac-
tive systems in different domains, including route planning,
emergency management, and medical advising. It is cur-
rently being used in an implemented, end-to- end spoken di-
alogue system in which the system assists a person in man-
aging their medications. While we are primarily focussed
on human-machine collaboration, we believe that the model
will equally well apply to interactions between sophisticated
software agents that need to coordinate their activities.

Categoriesand Subject Descriptors
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Interfaces—Natural Language; H.5.2 [Information Inter-
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Keywords
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1. INTRODUCTION

One of the most general models for interaction between
humans and autonomous agents is based on natural human-
human dialogue. For humans, this is an interface that re-
quires no learning, and provides maximum flexibility and
generality. To build such an interface on the autonomous
agent side, however, is a formidable undertaking. We have
been building prototypes of such systems for many years,
focusing on limited problem solving tasks. Our approach
involves constructing a dialogue system that serves as the
interface between the human and the back-end agents. The
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goal is to insulate the human from the complexities of man-
aging and understanding agent-based systems, while insu-
lating the back-end agents from having to understanding
natural language dialogue. To be effective in a range of
situations, the dialogue agent must support contextually-
dependent interpretation of language and be able to map
linguistically specified goals into concrete tasking of back-
end agents.

We believe that a key for enabling such interaction models
is the development of a rich model of collaborative problem
solving. This model is needed for two distinct purposes:
(1) to enable contextual interpretation of language (i.e., in-
tention recognition); and (2) to provide a rich protocol for
communication between the autonomous agents that com-
prise the dialogue system. Thus the dialogue system appears
to the human as an intelligent collaborative assistant agent,
and is itself comprised of autonomous agents.

While work has been done on general theoretical frame-
works for collaborative interaction [8, 3, 11], these proposals
have generally not specified the details of what such mod-
els would look like. We believe that our model is compati-
ble with the SharedPlans formalism [8, 9, 11]. In fact, one
way of looking at our model is as an elaboration of some of
the key operators (such as Elaborate_Group, or Lochbaum’s
communicate recipe) in the SharedPlans framework. In our
own previous work [6, 1], we have described the beginnings
of practical models but these have not been very precisely
specified or complete. In this paper, we sketch a compre-
hensive model that provides a detailed analysis of a wide
range of collaborative problem solving situations that can
arise. This model is based on our experience in building
collaborative problem solving agents in a range of different
domains. In particular, collaborative agents (both human
and autonomous) need to have the capability to:

1. Discuss and negotiate goals;

2. Discuss options and decide on courses of action, in-
cluding assigning different parts of a task to different
agents;

3. Discuss limitations and problems with the current course
of action, and negotiate modifications;

4. Assess the current situation and explore possible fu-
ture eventualities;

5. Discuss and determine resource allocation;

6. Discuss and negotiate initiative in the interactions;
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Figure 1: Collaborative problem solving model

7. Perform parts of the task, and report to others to up-
date shared knowledge of the situation.

Although our focus is on language-based interaction, it is our
belief that these capabilities are required in any sufficiently
complex (realistic, flexible) agent-based system.

2. OVERVIEW OF THE MODEL

Our model of collaborative problem solving is shown in
Figure 1. At the heart of the model is the problem solving
level, which describes how a single agent solves problems.
For example, an agent might adopt an obligation, or might
evaluate the likelihood that a certain action will achieve that
objective. This level is based on a fairly standard model of
agent behavior, that we will describe in more detail shortly.*

The problem solving level is specialized to a particular
task and domain by a task model. The types of domains we
have explored include designing a kitchen, providing medical
advice, assessing damage from a natural disaster, planning
emergency services, and so on. The task model describes
how to perform these tasks, such as what possible objectives
are, how objectives are (or might be) related, what resources
are available, and how to perform specific problem solving
actions such as evaluating a course of action.

For an isolated autonomous agent, these two levels suffice
to describe its behavior, including the planning and execu-
tion of task-level actions. For collaborative activity, how-
ever, we need more.

The collaborative problem solving level builds on
the single-agent problem solving level. The collaborative
problem solving actions parallel the single-agent ones, ex-
cept that they are joint actions involving jointly understood
objects. For example, the agents can jointly adopt an inten-
tion (making it a joint intention), or they can jointly identify
a relevant resource, and so on.

!Underlying the problem solving level is the representation
of the agent’s internal state, for example its current beliefs
and intentions. The details of how these are represented are
not important for understanding the collaborative problem
solving model, however.
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Finally, an agent cannot simply perform a collaborative
action by itself. The interaction level consists of actions
performed by individuals in order to perform their part of
collaborative problem solving acts. Thus, for example, one
agent may initiate a collaborative act to adopt a joint in-
tention, and another may complete the collaborative act by
agreeing to adopt the intention.

This paper proceeds as follows. First, we describe the
collaborative problem solving model in more detail, starting
with a review of some underlying concepts, moving on to
the single-agent problem solving level, and finally describ-
ing the collaborative problem solving and interaction levels.
The emphasis is on the information maintained at each level
and its use during collaborative problem solving. We then
present a detailed example of the model in action, drawn
from a medical advisor domain that we are using for our
prototype implementation. We conclude with a few com-
ments about open issues and future work.

3. BASIC CONCEPTS

All of the levels in our model involve a core set of concepts
related to planning and acting. Many of these concepts have
been used in the planning literature for years, and we only
informally describe them in this section. The application of
the concepts to modeling collaborative interaction is what
is important for present purposes.

3.1 Situations

We start with a fairly standard notion of situation as in
the situation calculus [12]—a situation is a snapshot of the
world at a particular point in time (or hypothetical point
in time when planning into the future). While situations
are a complete state of the world at a certain time, our
knowledge of a situation is necessarily incomplete except in
the most simple cases (like traditional blocks world planning
systems). Also note that a situation might include an agent’s
beliefs about the past and the future, and so might entail
knowledge about the world far beyond what is immediately
true.

3.2 Atomic Actions

Also as in the situation calculus, actions are formalized
as functions from one situation to another. Thus, perform-
ing an action in one situation produces a new situation. Of
course, generally we do not know the actual situation we
are in, so typically knowledge about actions is character-
ized by statements that if some precondition of an action
is true in some situation, then some effect of it will be true
in the situation resulting from the action. Note that unlike
the standard situation calculus, however, we take actions to
be extended in time and allow complex simultaneous and
overlapping actions.

3.3 Recipes

A specification of system behavior is often called a plan,
or recipe [13]. We will use the term “recipe” here as the
notion of plan has been overused and so is ambiguous. A
very simple form of recipe is a fixed sequence of actions
to perform, much like those built by traditional planning
systems. The recipes found in cookbooks often aspire to this
level of simplicity but typically are not as straightforward.
More generally, recipes capture complex learned behavior
and guide an agent towards a goal through a wide range



of possible conditions and ranges of possible results from
previous action.

For our work, we do not care about the specific form of
what a recipe is, or insist that different agents have the same
recipes. Rather, a recipe is a way of deciding what to do
next. More formally, a recipe is a function from situations
to actions, where the action is the next thing to do according
to the recipe.

Note that we need some special “actions” to make this
work. First, we must allow the action of doing nothing or
waiting for some period of time, as this might be the best
thing to do for some recipes. We also need to allow the
possibility that a recipe may not specify what to do next
in certain situations. To formalize this, we need to make
the recipe function a partial function, or introduce a special
“failure” value. Finally, we need to allow actions to be plan-
ning actions—i.e., it may be that the best thing to do is to
set a subgoal and do some more planning before any further
physical action.

3.4 Objectives

Our notion of objective is similar to some uses of the
term “goal.” But the term goal is used is different ways in
the literature: goals are sometimes the intentions driving
an agent’s behavior, at other times they are the input to a
planning process, and sometimes they are simply the main
effects of a recipe. Goals are sometimes considered to be
states of the world to attain (e.g., the goal is a situation
where block A is on block B), or sometimes an action that
must be performed (e.g., the goal is to open the door).

We will try to avoid all this ambiguity by not using the
word goal any further. An objective is an intention that
is driving our current behavior. Objectives are expressed in
the form of abstract actions, such as winning the lottery, or
getting block A onto block B. Objectives are not just any
actions. They are actions that are defined in terms of their
effects, and cannot be executed directly. To accomplish ob-
jectives, we need to choose or build a recipe that, if followed,
leads to a state in which effects of the objective hold.

3.5 Resources

The final key concept in the abstract model is that of a
resource. A resource is a object that is used during the
execution of a recipe. Resources might be consumable (i.e.,
cease to exist in their prior form) as a result of the recipe
(e.g., as ingredients are consumed when making a cake), or
might be reusable (e.g., as a hammer is used to drive in
a nail). In a traditional planning model, resources are the
objects that are used to bind the variables in the plan and, in
fact, many applications of planning are essentially resource
allocation problems.

4. PROBLEM SOLVING

Once we have the concepts defined in the last section, we
can now give an quick overview of our model of a single
agent’s problem solving behavior. Just as task-level actions
affect the state of the world, problem-solving actions affect
the cognitive state of the agent, which we represent (for pur-
poses of this paper) as the problem solving (PS) state.
The problem solving state consists of the agents commit-
ments towards objectives, the recipes for achieving those
objectives, the resources used in those recipes, and so on.
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Figure 2: Life cycle of an intention

The PS state must contain at least the following informa-
tion:

1. The current situation: what the agent believes (or as-
sumes) to be true as a basis for acting, including what
resources are available;

2. Intended objectives: a forest of objectives that the
agent has adopted, although not all are necessarily
motivating its current action. Each tree in the for-
est captures a subobjective hierarchy for a particular
root objective;

3. Active objective(s): the intended objective(s) that is
(are) currently motivating the agent’s action; An ob-
jective tree that includes an active objective is an ac-
tive objective tree;

4. Intended recipes: the recipes and resources that the
agent has chosen for each of the intended objectives;

5. Recipe library: a set of recipes indexed by objective
and situation types. The library need not be static and
may be expanded by planning, learning, adaptation,
etc.

An agent’s problem solving activity involves exploring the
current situation, adopting objectives, deciding on courses of
action and resources to use, performing actions, and using
the results of actions to further modify its objectives and
future actions. The problem solving actions (see Figure 1)
are divided into two classes, one concerned with intention
and commitment and one concerned with knowledge and
reasoning.

4.1 PSActsReatingto Commitment

In our model of agent behavior (similar to [7, 15]), an
agent is driven by its intentions, in the form of objectives,
recipes, and resource uses to which it is committed. Inten-
tions move through a life cycle shown in Figure 2.

In order to act, an agent must form intentions by means
of a commitment act that we call Adopt. For example, an
agent might adopt a particular recipe for a certain objec-
tive, say to plan a trip by using a recipe to call a travel
agent. If they change their mind, they may drop the com-
mitment using a act we call Abandon. For instance, the
agent may change their mind, abandon the recipe to call the



travel agent and adopt a recipe to book a ticket on the web.
Similarly, an agent may adopt or abandon objectives, and
adopt and abandon commitments to use certain resources.

An agent may have several different objectives that it is
committed to, and even with respect to one objective, there
may be several sub-objectives that could be chosen to drive
the agent’s action. The action of choosing the objective(s)
to motivate the next behavior is called Select. Once an
objective is selected, the agent may perform reasoning to
elaborate on its associated recipe, or to evaluate an action
that that recipe suggests, and may eventually select an ac-
tion to perform. If an agent’s priorities change, it may De-
fer the objective or action, leaving it as an intention to be
addressed later. Finally, when an agent believes that an
objective has been achieved, it may Release the objective,
thereby removing it from its set of intentions.

4.2 PSActsReating to Reasoning

Before committing, an agent will typically perform some
reasoning. One of the key operations is to determine what
options are available, which we call Identify. For exam-
ple, an agent may identify a possible recipe for achieving
some objective, or identify certain resources that are avail-
able. They may even identify possible goals to pursue and
consider them before making any commitment. Once an op-
tion is identified, the agent may Evaluate it relative to its
purpose. For instance, it might evaluate a recipe to see how
well it might accomplish its associated objective, or evaluate
an objective to see if it is worthwhile, or evaluate a resource
or action to see how well it serves a particular recipe. In ad-
dition, an agent may choose to Modify a certain objective,
recipe or resource to produce a another that then could be
evaluated.

In addition to reasoning about possible goals and actions,
an agent may also reason about its current situation. Situa-
tions may be identified by exploring them further, and may
be evaluated to see how desirable the current (or expected)
situation is and whether it should plan to change it. Agents
that act and do little planning would only care about the
current situation they are in, and all activity would be tied
to that situation. More complex agents, however, could do
planning in hypothetical situations, or want to act based on
certain assumptions.

4.3 Problem Solving Behavior

With these elements of the problem solving model in place,
we can describe how an agent solves problems. It is con-
venient to present this activity as occurring in a series of
phases. In practice, an agent may short circuit phases, or
return to prior phases to reconsider their commitments at
any time.

1. Determining the Objective: An agent may at any time
reconsider the objectives it has, adopt new ones, aban-
don old ones, and otherwise modify and adjust them.
Of course effective agents will not spend too much time
reconsidering and evaluating their objectives, but will
spend their effort in pursuing an objective. To do this,
they must first select one or more objectives to pursue.
These are the active objectives.

2. Determining the Recipe: Given an active objective, an
agent must then determine a recipe to follow that may
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achieve the objective. It may be that a recipe has al-
ready been used for some time to determine the agent’s
actions in pursuing the objective, and the agent may
simply invoke the recipe once again in the current sit-
uation to determine what to do next. But the agent
might also consider switching to another recipe, refin-
ing an existing recipe, or actually building a new recipe
for this objective. In these latter cases, the next ac-
tion the agent does is a planning action that results in
a modified (or new) recipe for the objective.

3. Using the Selected Recipe: Given a selected recipe, the
agent can then identify the next action to perform.
If the recipe returns a sub-objective, then the agent
needs to restart the process of evaluating objectives
and choosing or constructing recipes. If the recipe in-
dicates an atomic action, the agent can evaluate the
desirability of the proposed action, and if it seems rea-
sonable, perform the action. At that point, the situa-
tion has changed and the process starts again.

To implement such a problem solving agent, we would
need to specify strategies for when objectives, recipes and
proposed actions are evaluated and reconsidered, versus how
often the current objective, recipe or proposed action is
just taken without consideration. Agents that performed
more evaluation and deliberation would be more careful and
might be able to react better to changing situations, whereas
agents that do less evaluation would probably be more re-
sponsive but also more brittle. The specifics of these strate-
gies are not the focus of this paper.

5. COLLABORATIVEPROBLEM SOLVING

We now turn to the central issue of collaborative prob-
lem solving. When two agents collaborate to achieve goals,
they must coordinate their individual actions. To mirror the
development at the problem solving level, the collaborative
problem solving level (see Figure 1) operates on the col-
laborative problem solving (CPS) state, which captures the
joint objectives, the recipes jointly chosen to achieve those
objectives, the resources jointly chosen for the recipes, and
SO on.

The collaborative problem solving model must serve two
critical purposes. First it must provide the structure that
enables and drives the interactions between the agents as
they decide on joint objectives, actions and behavior. In so
doing, it provides the framework for intention recognition,
and it provides the constraints that force agents to inter-
act in ways that maintain the collaborative problem solving
state. Second, it must provide the connection between the
joint intentions and the individual actions that an agent per-
forms as part of the joint plan, while still allowing an agent
to have other individual objectives of its own.

While we talk of shared objectives, intended actions and
resources, we do not want to require that agents have the
same library of recipes to choose from. This seems too strong
a constraint to place on autonomous agents. We assume
only that the agents mutually agree on the meaning of ex-
pressions that describe goals and actions. For example, they
might both understand what the action of taking a trip en-
tails. The specific recipes each has to accomplish this action,
however, may be quite different. Their recipes may accom-
plish subgoals in different orders for instance (one may book



a hotel first, then get a air ticket, where the other might re-
verse the order). They might break the task down into differ-
ent subgoals (e.g., one may call a travel agent and book flight
and hotel simultaneously, while the other might book flights
with an agent and find hotels on the web). And for any
subgoal, they might pick different actions (e.g., one might
choose a flight that minimizes cost, whereas the other might
minimize travel time). To collaborate, the agents must agree
to some level of detail on a new abstract joint recipe that
both can live with. The joint recipe needs be refined no fur-
ther in places where the two agents agree that one agent is
responsible for achieving a sub-objective.

Establishing part of the collaborative problem solving state
requires an agreement between the agents. One agent will
propose an objective, recipe, or resource, and the other can
accept , reject or produce a counterproposal or request fur-
ther information. This is the level that captures the agent
interactions. To communicate, the agent receiving a mes-
sage must be able to identify what CPS act was intended,
and then generates responses that are appropriate to that
intention. In agent-communication languages between pro-
grams, the collaborative act would be explicit. In human-
agent communication based on natural language, a complex
intention recognition process may be required to map the
interaction to the intended CPS act. This will be described
in further detail in the Interaction section below, after the
abstract collaborative model is described.

5.1 Collaborative Problem Solving Acts

As afirst cut, the collaborative problem solving level looks
just like the PS level, except that all acts are joint between
the collaborating agents. We will name these CPS acts us-
ing a convention that just applies a prefix of “c-”. Thus
the c-adopt-objective act is the action of the agents jointly
adopting a joint objective.

While we can model an individual agent adopting an in-
dividual objective as a primitive act in our model at the PS
level, there is no corresponding primitive act for two agents
jointly adopting a goal. This would require some sort of
mind synchronization that it not possible. We agree with
researchers such as Grosz and Sidner [8] and Cohen and
Levesque [3] in that joint actions must be composed out of
individual actions. There remains a meaningful level of anal-
ysis that corresponds to the PS level model if we view the
CPS acts as complex acts, i.e., objectives, that the agents
recognize and use to coordinate their individual actions. The
constraints on rational behavior that an agent uses at the
PS level have their correlates at the collaborative PS level,
and these inform the intention recognition and planning be-
havior of the agents as they coordinate their activities. For
instance, a rational individual agent would not form an ob-
jective to accomplish some state if it believed that the state
currently holds (or will hold in the future at the desired
time). Likewise, collaborating individual agents would not
form a collaborative objective to achieve a state that they
jointly believe will hold at the (jointly) desired time. The
analysis of the behavior at this abstract level provides a sim-
ple and intuitive set of constraints on behavior that would
be hard to express at the interaction action level.

5.2 Thelnteraction Leve

The interaction level provides the connection between the
communicative acts (i.e., speech acts) that the agents per-
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form, such as requesting, informing, warning, and promis-
ing, and the collaborative problem solving acts they jointly
perform. In other words, it deals with the individual ac-
tions that agents perform in order to engage in collabora-
tive problem solving. All the acts at this level take the
form of some operator applying to some CPS act. For in-
stance, an agent can Initiate a collaborative act by mak-
ing a proposal and the other agent can Complete the act
(by accepting it) or Reject it (in which case the CPS act
fails because of lack of “buy in” by the other agent). In
more complex interactions, an agent may Continue a CPS
act by performing clarification requests, elaborations, mod-
ifications or counter-proposals. The interaction-level acts
we propose here are similar to Traum’s [17] grounding act
model, which is not surprising as grounding is also a form
of collaborative action.

From a single agent’s perspective, when it is performing
an interaction act (say, initiating adoption of an joint objec-
tive), it must plan some communicative act (say, suggesting
to the other agent that it be done) and then perform (or re-
alize) it. On the other side of the coin, when one agent per-
forms a communicative act, the other agent must recognize
what interaction act was intended by the performer. Identi-
fying the intended interaction acts is a critical part of the in-
tention recognition process, and is essential if the agents are
to maintain the collaborative problem-solving state. For in-
stance, consider a kitchen design domain in which two agents
collaborative to design and build a kitchen. The utterance
“Can we put a gas stove beside the refrigerator” could be
said in order to (1) ask a general question about acceptable
practice in kitchen design; (2) propose adding a stove to the
current design; or (3) propose modifying the current design
(say by using a gas stove rather than an electric one). Each
of these interpretations requires a very different response
from the hearer and, more importantly, results in a different
situation for interpreting all subsequent utterances. Fach
one of these interpretations corresponds to a different col-
laborative problem solving act. If we can identify the correct
act, we then have a chance of responding appropriately and
maintaining the correct context for subsequent utterances.

We should note that the interaction level is not just re-
quired for natural language interaction. In other modali-
ties, the same processes must occur (for example, the user
initiates a joint action by clicking a button, and the sys-
tem completes it by computing and displaying a value). In
standard agent communication languages, these interaction
level actions are generally explicit in the messages exchanged
between agents, thereby eliminating the need to recognize
them (although not to the need to understand and perform
them oneself).

5.3 Examples

To put this all together, consider some typical but con-
structed examples of interactions. These examples are moti-
vated by interactions we have observed in a medical advisor
domain in which the system acts to help a person manage
their medications. These examples are meant to fit together
to form a constructed dialogue that illustrates a number of
points about the CPS level analysis.

The simplest collaborative acts consist of an initiate-complete

pair. For example, here is a simple c-identify of a situation:

(1)
(2)

U: Where are my pills?
S: In the kitchen



Utterance (1) is a Wh-question that initiates the c-identify-
situation act, and utterance (2) answers the question and
completes the CPS act.? When utterance (2) is done, the
two agents will have jointly performed the c-identify-situation
action.

Utterances may introduce multiple collaborative acts at
one time, and these may be completed by different acts. For
instance:

S: It’s time to take an aspirin (3)
U: Okay (4)
U: [Takes the aspirin] (5)

Utterance (3) is a suggestion that U take an aspirin, which
initiates both a c-adopt-objective (to intend to take medica-
tion currently due) and a c-select-action (to take an aspirin).
Utterance (4) completes the c-adopt action and establishes
the joint objective. Action (5) completes the c-select action
by means of U performing the PS-level act select on the
action, resulting in the action being performed.

Many more complex interactions are possible as well. For
instance:

U: What should we do now? (6)
S: Let’s plan your medication for the day (7)
U: Okay (8)

Utterance (6) is a question that initiates a c-adopt-objective,
utterance (7) continues this act by answering the question
with a suggestion, and utterance (8) completes the act (thus
establishing the joint objective). Note that the objective
agreed upon is itself a collaborative problem solving act—
they have established a joint objective to perform a c-adopt
action for some as yet unspecified recipe. This could then
lead to pursuing a sub-objective such as creating a recipe as
in the following interaction:

S: You could take your celebrex at noon. (
U: Will that interfere with my lunch date (1
S: No. (1
U: OK. I'll do that (1

Utterance (9) is a suggestion that initiates a c-identify-

recipe and continues the previously established c-adopt-objective

action. Utterance (10) completes the c-identify of the recipe
(by grounding the suggestion), continues the c-adopt action,
and initiates a c-evaluate of the recipe by exploring a pos-
sible problem with the suggested action. Utterance (11)
completes the c-evaluate act by answering the question, and
utterance (13) then completes the c-adopt act by agreeing
to the recipe initially suggested in (9).

6. EXTENDED EXAMPLE

To better illustrate the complexity of even fairly simple
collaborative problem solving, the following is an example
of a session with a prototype Medication Advisor system
under development at Rochester [5]. The Medication Ad-
visor is designed to help people manage their prescription
medication regimes—a serious real-world problem that has
a significant impact on people’s health.

2Note that we are ignoring grounding issues in this paper.
In a dialogue system, the CPS act is not actually completed
until the answer to the question is grounded by U, say by
the utterance such as “OK” or “thanks”.
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(from [1])

To follow the problem solving, we need to understand
something of the architecture of the system. The Medica-
tion Advisor is an application of the TRIPS spoken dialogue
system [6], whose architecture is shown in Figure 3. As de-
scribed in [1], the main components of the system as regards
problem solving are as follows:

e The Interpretation Manager (IM), which maintains the
discourse context and recognizes user intention from
their utterances;

e The Behavioral Agent (BA), which manages system
problem solving obligations and drives system behav-
ior;

e The Task Manager (TM), which maintains the collab-
orative problem solving state and supports both inter-
pretation and execution with task- and domain-specific
knowledge; and

e The Generation Manager (GM), which coordinates the
generation of spoken speech and multimodal output,
among other functions.

This system is a fully implemented, end-to-end speech-driven
dialogue system, although for this session some aspects of
the problem-solving model were not fully implemented. For
brevity, we have suppressed most of the detail of the actual
message traffic between components of the system, focusing
solely on the interactions within the collaborative problem
solving model. Utterances are labeled by the agent and a
number indicating the sequence of speaker turns.
The user starts by asking a question:

U: Can I take an aspirin?

(1)

The Interpretation Manager asks the Task Manager to in-
terpret the utterance in the current problem solving con-
text. The Task Manager replies that the utterance looks
like an initiate of a c-evaluate-action. That is, the user



seems to be initiating a collaborative evaluation of the ac-
tion of taking aspirin. The Interpretation Manager uses this
result, together with other interpretation steps, and broad-
casts that as the system’s understanding of what the user
has just done.

When the Task Manager receives this message, it can up-
date its state to include the fact that, yes, the user has ini-
tiated a new collaborative act. Meanwhile, the Behavioral
Agent also receives the notification. It decides, based on its
current obligations, that the system should attempt to com-
plete the action. To do this, it asks the Task Manager to
perform the (non-collaborative) act of evaluating an action.
The Task Manager does this by following a recipe for evalu-
ating that type of action, which involves querying databases
for what medications the user is taking and whether any of
those interact with aspirin. It turns out that the there is an
interaction, so the evaluation is negative. The Behavioral
Agent, upon receipt of the result of the evaluation, requests
that the Generation Manager perform the communicative
act inform (with the evaluation results) in order to realize
the interaction act of completing the user’s c-evaluate-action
CPS act.

The Generation Manager determines what to say:

(2)

S: No, you are taking celebrex and celebrex
interacts with aspirin.

Once the speech has been generated, the Generation Man-

ager can broadcast to the rest of the system that the inform

act is done. Note that the interaction act (the complete) is

not yet done, since this depends on the user having under-

stood the system’s utterance (i.e., on its being grounded).
The user responds with:

U: Oh. (3)

The Interpretation Manager takes this as grounding its ut-
terance (2), since it does not indicate any lack of under-
standing. This fact is broadcast to the rest of the system.
Once the system’s utterance is grounded, the Generation
Manager can announce that the interaction act is done. As
there is no additional problem solving content in the user’s
utterance (3), the system does not do anything in response.
The user continues with:

U: Could Celebrex cause headaches?

(4)

As with (1), the IM asks the TM to interpret the utterance
in the current problem solving state. Note that the IM must
explicitly indicate that this interpretation should be relative
to the context in which the system’s interaction act (the
complete of the c-evaluate-action) is done. This is just one
example of the explicit synchronization necessary in order
to implement the collaborative problem solving model in a
distributed system.

The TM answers that the utterance (4) looks like an ini-
tiate of a c-identify-situation (as to whether celebrex causes
headaches). With this choice of an interpretation, the Task
Manager can update its model of what the user is doing.
Meanwhile, the Behavioral Agent decides that the system
should perform its part of the collaborative action in order
to complete it. The TM does the identify-situation and
responds that it is not the case that celebrex can cause
headaches. The BA passes this answer to the GM, request-
ing that it inform the user in order to complete the collab-
orative act. This results in the following system utterance:
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S: No, headaches are not an expected side-effect
of celebrex.

()

And again, the inform is done once the speech has been
produced.

Meanwhile, the TM, in the process of updating its state
based on the user having initiated the c-identify-situation
regarding celebrex causing headache, has performed some
plan recognition and thinks it is likely that the user may be
trying to cure their headache. Note that up to this point, the
user has not said anything about having a headache—this
is purely an inference based on task and domain knowledge.
The TM reports that this is a problem which should be
resolved, although it leaves it to the BA to prioritize the
system’s objectives and decide what to do.

In this case, the BA decides to take initiative and requests
that the TM suggest what to do. The TM responds that
the system should initiate a c-identify-situation regarding
whether the user has a headache. The BA sends this to the
GM, resulting the following utterance:

S: Do you have a headache?

(6)

Once the speech has been output, the GM announces that
the ask is done. At this point both interaction acts (“headaches
are not a side-effect of celebrex” and “do you have a headache”)
are awaiting grounding, and the question is awaiting a re-
sponse from the user. When the user answers with:

U: Yes. (7)

Both system utterances (5) and (6) are grounded, so both
pending interactions acts are marked as completed, and the
system proceeds to interpret the user’s utterance (7) in the
resulting context.

The dialogue for another continues for another fifteen ut-
terances as the system addresses the user’s headache and
then supports them with several other aspects of their med-
ication regime. Unfortunately, space precludes an extended
presentation.

7. RELATED WORK

As noted above, work has been done on general theo-
retical frameworks for collaborative interaction [3, 9, 11].
However, the focus of these models was more specifying the
mental details (beliefs, intentions, etc.) of such collabora-
tion, whereas the focus of our model is describing practical
dialogues. Also, in these proposals, many details of what the
models would look like are not given. The SharedPlans for-
malism [9, 11], for example, does expressly model the adop-
tion of recipes (Select_Recipe, Select_Recipe_GR), but that
is as far as it goes. We believe that our model will prove
to be complementary to this formalism, with the remain-
der of problem solving acts either existing at some higher
level (e.g. adopt/abandon/evaluate-objective), being added
to the same recipe level (evaluate-recipe), or being part of
the unspecified Elaborate_Individual/Elaborate_Group pro-
cesses.

Our belief that human-machine interaction can occur most
naturally when the machine understands and does problem
solving in a similar way to humans is very close to the philos-
ophy upon which the COLLAGEN project [16] is founded.
COLLAGEN is built on the SharedPlan formalism and pro-
vides an artificial language, human-computer interface with
a software agent. The agent collaborates with the human



through both communication and observation of actions.
COLLAGEN, as it works on a subset of the SharedPlans
formalism, also does not explicitly model most of our prob-
lem solving acts.

Several dialogue systems have divided intention recogni-
tion into several different layers, although these layerings are
at much different levels than our own. Ramshaw [14] ana-
lyzes intentions on three levels: domain, exploration, and
discourse. Domain level actions are similar to our own do-
main level. The discourse level deals with communicative
actions. The exploration level supports a limited amount of
evaluations of actions and plans. These, however, cannot be
directly used to actually build up a collaborative plan, as
they are on a stack and must be popped before the domain
plan is added to.

Lambert and Carberry [10] also had a three level model,
consisting of domain, problem solving, and discourse levels.
Their problem solving level was fairly underdeveloped, but
consists of such recipes as Build_Plan and Compare_Recipe_-
by_Feature (which allow the comparison of two recipes on
one of their features). The model does not include other
of our problem solving acts, nor does it explicitly model
collaboration, interaction acts, etc.

These models assumed a master-slave collaboration paradigm,

where an agent must automatically accept any proposal from
the other agent. Chu-Carroll and Carberry [2] extended the
work of Lambert and Carberry, adding a level of proposal
and acceptance, which overcame the master-slave problem.
However, Chu-Carroll and Carberry (along with Ramshaw
and Lamber and Carberry), assume a shared, previously-
specified problem solving plan which is being executed by
the agents in order to collaborate. This restricts collabora-
tion to homogeneous agents which have identical problem
solving plans, whereas in our model, there is no set prob-
lem solving plan, allowing agents with different individual
problem solving strategies to collaborate.

Finally, Elzer [4] specifically mentions the need for a problem-

solving model in discourse, citing dialogue segments similar
to those that we give. However, she offers no proposal of a
solution.

8. CONCLUSIONS

The collaborative problem solving model presented in this
paper offers a concrete proposal for modeling collaboration
between agents, including in particular between human and
software agents. Our model is based on our experience
building collaborative systems in several problem solving do-
mains. It incorporates as many elements as possible from
formal models of collaboration, but is also driven by the
practical needs of an implemented system.
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